File size: 10,060 Bytes
eeb0f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
Conversation Memory - Shared state across all agents
Allows agents to remember user data and coordinate with each other
"""

from typing import Dict, Any, List, Optional
from datetime import datetime
import json


class ConversationMemory:
    """
    Shared memory system for all agents
    Stores user profile, extracted data, and conversation state
    Supports session persistence across app restarts
    """
    
    def __init__(self, user_id: Optional[str] = None, session_store=None):
        # User profile data (shared across all agents)
        self.user_profile = {
            'age': None,
            'gender': None,
            'weight': None,
            'height': None,
            'bmi': None,
            'activity_level': None,
            'fitness_level': None,
            'health_conditions': [],
            'medications': [],
            'allergies': [],
            'dietary_restrictions': []
        }
        
        # Agent-specific extracted data
        self.extracted_data = {
            'nutrition': {},
            'exercise': {},
            'symptom': {},
            'mental_health': {},
            'general_health': {}
        }
        
        # Conversation state
        self.conversation_state = {
            'current_topic': None,
            'current_agent': None,
            'previous_agent': None,
            'data_collected': {},
            'pending_questions': [],
            'conversation_flow': []
        }
        
        # Metadata
        self.metadata = {
            'session_id': None,
            'user_id': user_id,
            'started_at': datetime.now().isoformat(),
            'last_updated': datetime.now().isoformat()
        }
        
        # Session persistence
        self.user_id = user_id
        self.session_store = session_store
        self.auto_save = True  # Auto-save on updates
        
        # Load existing session if user_id provided
        if user_id and session_store:
            self._load_session()
    
    # ===== User Profile Management =====
    
    def update_profile(self, key: str, value: Any) -> None:
        """Update user profile data"""
        if key in self.user_profile:
            self.user_profile[key] = value
            self.metadata['last_updated'] = datetime.now().isoformat()
            
            # Auto-save if enabled
            if self.auto_save and self.user_id and self.session_store:
                self._save_session()
    
    def get_profile(self, key: str) -> Any:
        """Get user profile data"""
        return self.user_profile.get(key)
    
    def get_full_profile(self) -> Dict[str, Any]:
        """Get complete user profile"""
        return self.user_profile.copy()
    
    def get_missing_fields(self, required_fields: List[str]) -> List[str]:
        """Check what required fields are still missing"""
        return [field for field in required_fields 
                if not self.user_profile.get(field)]
    
    def has_complete_profile(self, required_fields: List[str]) -> bool:
        """Check if all required fields are filled"""
        return len(self.get_missing_fields(required_fields)) == 0
    
    # ===== Agent Data Management =====
    
    def add_agent_data(self, agent_name: str, key: str, value: Any) -> None:
        """Add agent-specific data"""
        if agent_name not in self.extracted_data:
            self.extracted_data[agent_name] = {}
        
        self.extracted_data[agent_name][key] = value
        self.metadata['last_updated'] = datetime.now().isoformat()
    
    def get_agent_data(self, agent_name: str, key: str = None) -> Any:
        """Get agent-specific data"""
        agent_data = self.extracted_data.get(agent_name, {})
        
        if key:
            return agent_data.get(key)
        return agent_data
    
    def get_all_agent_data(self) -> Dict[str, Any]:
        """Get all agent data"""
        return self.extracted_data.copy()
    
    # ===== Conversation State Management =====
    
    def set_current_agent(self, agent_name: str) -> None:
        """Set current active agent"""
        self.conversation_state['previous_agent'] = self.conversation_state['current_agent']
        self.conversation_state['current_agent'] = agent_name
        
        # Add to conversation flow
        self.conversation_state['conversation_flow'].append({
            'agent': agent_name,
            'timestamp': datetime.now().isoformat()
        })
    
    def get_current_agent(self) -> Optional[str]:
        """Get current active agent"""
        return self.conversation_state['current_agent']
    
    def get_previous_agent(self) -> Optional[str]:
        """Get previous agent"""
        return self.conversation_state['previous_agent']
    
    def set_current_topic(self, topic: str) -> None:
        """Set current conversation topic"""
        self.conversation_state['current_topic'] = topic
    
    def get_current_topic(self) -> Optional[str]:
        """Get current conversation topic"""
        return self.conversation_state['current_topic']
    
    def add_pending_question(self, question: str, priority: int = 0) -> None:
        """Add a pending question to ask user"""
        self.conversation_state['pending_questions'].append({
            'question': question,
            'priority': priority,
            'added_at': datetime.now().isoformat()
        })
        
        # Sort by priority (higher first)
        self.conversation_state['pending_questions'].sort(
            key=lambda x: x['priority'], 
            reverse=True
        )
    
    def get_next_pending_question(self) -> Optional[str]:
        """Get next pending question"""
        if self.conversation_state['pending_questions']:
            return self.conversation_state['pending_questions'][0]['question']
        return None
    
    def clear_pending_questions(self) -> None:
        """Clear all pending questions"""
        self.conversation_state['pending_questions'] = []
    
    def get_conversation_flow(self) -> List[Dict[str, Any]]:
        """Get conversation flow history"""
        return self.conversation_state['conversation_flow']
    
    # ===== Context Summary =====
    
    def get_context_summary(self) -> str:
        """Get a summary of current context for agents"""
        summary_parts = []
        
        # User profile summary
        profile = self.user_profile
        if profile['age']:
            summary_parts.append(f"User: {profile['age']} tuổi")
        if profile['gender']:
            summary_parts.append(f"giới tính {profile['gender']}")
        if profile['weight'] and profile['height']:
            summary_parts.append(f"{profile['weight']}kg, {profile['height']}cm")
        
        # Current topic
        if self.conversation_state['current_topic']:
            summary_parts.append(f"Topic: {self.conversation_state['current_topic']}")
        
        # Previous agent
        if self.conversation_state['previous_agent']:
            summary_parts.append(f"Previous agent: {self.conversation_state['previous_agent']}")
        
        return " | ".join(summary_parts) if summary_parts else "No context yet"
    
    # ===== Serialization =====
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert memory to dictionary"""
        return {
            'user_profile': self.user_profile,
            'extracted_data': self.extracted_data,
            'conversation_state': self.conversation_state,
            'metadata': self.metadata
        }
    
    def to_json(self) -> str:
        """Convert memory to JSON string"""
        return json.dumps(self.to_dict(), ensure_ascii=False, indent=2)
    
    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> 'ConversationMemory':
        """Create memory from dictionary"""
        memory = cls()
        memory.user_profile = data.get('user_profile', memory.user_profile)
        memory.extracted_data = data.get('extracted_data', memory.extracted_data)
        memory.conversation_state = data.get('conversation_state', memory.conversation_state)
        memory.metadata = data.get('metadata', memory.metadata)
        return memory
    
    # ===== Session Persistence =====
    
    def _save_session(self) -> None:
        """Save current memory state to session store"""
        if not self.user_id or not self.session_store:
            return
        
        session_data = self.to_dict()
        self.session_store.save_session(self.user_id, session_data)
    
    def _load_session(self) -> bool:
        """
        Load memory state from session store
        
        Returns:
            True if session loaded, False otherwise
        """
        if not self.user_id or not self.session_store:
            return False
        
        session_data = self.session_store.load_session(self.user_id)
        
        if session_data:
            self.user_profile = session_data.get('user_profile', self.user_profile)
            self.extracted_data = session_data.get('extracted_data', self.extracted_data)
            self.conversation_state = session_data.get('conversation_state', self.conversation_state)
            self.metadata = session_data.get('metadata', self.metadata)
            print(f"✅ Loaded session for user {self.user_id}")
            return True
        
        print(f"ℹ️  No existing session found for user {self.user_id}, starting fresh")
        return False
    
    def save_session_now(self) -> None:
        """Manually save session (useful when auto_save is disabled)"""
        self._save_session()
    
    def clear_session(self) -> None:
        """Clear session from storage"""
        if self.user_id and self.session_store:
            self.session_store.delete_session(self.user_id)
    
    # ===== Utility Methods =====
    
    def clear(self) -> None:
        """Clear all memory (start fresh conversation)"""
        self.__init__()
    
    def __repr__(self) -> str:
        return f"<ConversationMemory: {self.get_context_summary()}>"