Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import time
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 5 |
+
from threading import Thread
|
| 6 |
+
print("Loading model and tokenizer...")
|
| 7 |
+
model_name = "large-traversaal/Phi-4-Hindi"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
+
model_name,
|
| 11 |
+
torch_dtype=torch.float16,
|
| 12 |
+
load_in_4bit=True,
|
| 13 |
+
device_map="auto"
|
| 14 |
+
)
|
| 15 |
+
print("Model and tokenizer loaded successfully!")
|
| 16 |
+
def generate_response(message, temperature, max_new_tokens, top_p):
|
| 17 |
+
print(f"Input: {message}")
|
| 18 |
+
start_time = time.time()
|
| 19 |
+
inputs = tokenizer(message, return_tensors="pt").to(model.device)
|
| 20 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 21 |
+
gen_kwargs = {
|
| 22 |
+
"input_ids": inputs["input_ids"],
|
| 23 |
+
"streamer": streamer,
|
| 24 |
+
"temperature": temperature,
|
| 25 |
+
"max_new_tokens": max_new_tokens,
|
| 26 |
+
"top_p": top_p,
|
| 27 |
+
"do_sample": True if temperature > 0 else False,
|
| 28 |
+
}
|
| 29 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 30 |
+
thread.start()
|
| 31 |
+
result = []
|
| 32 |
+
for text in streamer:
|
| 33 |
+
result.append(text)
|
| 34 |
+
yield "".join(result)
|
| 35 |
+
end_time = time.time()
|
| 36 |
+
time_taken = end_time - start_time
|
| 37 |
+
output_text = "".join(result)
|
| 38 |
+
print(f"Output: {output_text}")
|
| 39 |
+
print(f"Time taken: {time_taken:.2f} seconds")
|
| 40 |
+
with gr.Blocks() as demo:
|
| 41 |
+
gr.Markdown("# Phi-4-Hindi Demo")
|
| 42 |
+
with gr.Row():
|
| 43 |
+
with gr.Column():
|
| 44 |
+
input_text = gr.Textbox(
|
| 45 |
+
label="Input",
|
| 46 |
+
placeholder="Enter your text here...",
|
| 47 |
+
lines=5
|
| 48 |
+
)
|
| 49 |
+
with gr.Row():
|
| 50 |
+
with gr.Column():
|
| 51 |
+
temperature = gr.Slider(
|
| 52 |
+
minimum=0.0,
|
| 53 |
+
maximum=1.0,
|
| 54 |
+
value=0.1,
|
| 55 |
+
step=0.01,
|
| 56 |
+
label="Temperature"
|
| 57 |
+
)
|
| 58 |
+
with gr.Column():
|
| 59 |
+
max_new_tokens = gr.Slider(
|
| 60 |
+
minimum=50,
|
| 61 |
+
maximum=1000,
|
| 62 |
+
value=400,
|
| 63 |
+
step=10,
|
| 64 |
+
label="Max New Tokens"
|
| 65 |
+
)
|
| 66 |
+
with gr.Column():
|
| 67 |
+
top_p = gr.Slider(
|
| 68 |
+
minimum=0.0,
|
| 69 |
+
maximum=1.0,
|
| 70 |
+
value=0.1,
|
| 71 |
+
step=0.01,
|
| 72 |
+
label="Top P"
|
| 73 |
+
)
|
| 74 |
+
with gr.Row():
|
| 75 |
+
clear_btn = gr.Button("Clear")
|
| 76 |
+
send_btn = gr.Button("Send", variant="primary")
|
| 77 |
+
with gr.Column():
|
| 78 |
+
output_text = gr.Textbox(
|
| 79 |
+
label="Output",
|
| 80 |
+
lines=15
|
| 81 |
+
)
|
| 82 |
+
send_btn.click(
|
| 83 |
+
fn=generate_response,
|
| 84 |
+
inputs=[input_text, temperature, max_new_tokens, top_p],
|
| 85 |
+
outputs=output_text
|
| 86 |
+
)
|
| 87 |
+
clear_btn.click(
|
| 88 |
+
fn=lambda: ("", "", "", ""),
|
| 89 |
+
inputs=None,
|
| 90 |
+
outputs=[input_text, output_text]
|
| 91 |
+
)
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
demo.queue().launch()
|