Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,14 +3,13 @@ import torch
|
|
| 3 |
import time
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 5 |
from threading import Thread
|
|
|
|
|
|
|
|
|
|
| 6 |
print("Loading model and tokenizer...")
|
| 7 |
model_name = "large-traversaal/Phi-4-Hindi"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
-
model_name,
|
| 11 |
-
torch_dtype=torch.bfloat16,
|
| 12 |
-
device_map="auto"
|
| 13 |
-
)
|
| 14 |
print("Model and tokenizer loaded successfully!")
|
| 15 |
def generate_response(message, temperature, max_new_tokens, top_p):
|
| 16 |
print(f"Input: {message}")
|
|
@@ -30,12 +29,21 @@ def generate_response(message, temperature, max_new_tokens, top_p):
|
|
| 30 |
result = []
|
| 31 |
for text in streamer:
|
| 32 |
result.append(text)
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
end_time = time.time()
|
| 35 |
time_taken = end_time - start_time
|
| 36 |
output_text = "".join(result)
|
|
|
|
|
|
|
| 37 |
print(f"Output: {output_text}")
|
| 38 |
print(f"Time taken: {time_taken:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
| 39 |
with gr.Blocks() as demo:
|
| 40 |
gr.Markdown("# Phi-4-Hindi Demo")
|
| 41 |
with gr.Row():
|
|
|
|
| 3 |
import time
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 5 |
from threading import Thread
|
| 6 |
+
import time
|
| 7 |
+
import pytz
|
| 8 |
+
from datetime import datetime
|
| 9 |
print("Loading model and tokenizer...")
|
| 10 |
model_name = "large-traversaal/Phi-4-Hindi"
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
print("Model and tokenizer loaded successfully!")
|
| 14 |
def generate_response(message, temperature, max_new_tokens, top_p):
|
| 15 |
print(f"Input: {message}")
|
|
|
|
| 29 |
result = []
|
| 30 |
for text in streamer:
|
| 31 |
result.append(text)
|
| 32 |
+
current_output = "".join(result)
|
| 33 |
+
if current_output.startswith(message):
|
| 34 |
+
yield current_output[len(message):]
|
| 35 |
+
else:
|
| 36 |
+
yield current_output
|
| 37 |
end_time = time.time()
|
| 38 |
time_taken = end_time - start_time
|
| 39 |
output_text = "".join(result)
|
| 40 |
+
if output_text.startswith(message):
|
| 41 |
+
output_text = output_text[len(message):]
|
| 42 |
print(f"Output: {output_text}")
|
| 43 |
print(f"Time taken: {time_taken:.2f} seconds")
|
| 44 |
+
pst_timezone = pytz.timezone('America/Los_Angeles')
|
| 45 |
+
current_time_pst = datetime.now(pst_timezone).strftime("%Y-%m-%d %H:%M:%S %Z%z")
|
| 46 |
+
print(f"Current timestamp (PST): {current_time_pst}")
|
| 47 |
with gr.Blocks() as demo:
|
| 48 |
gr.Markdown("# Phi-4-Hindi Demo")
|
| 49 |
with gr.Row():
|