Spaces:
Sleeping
Sleeping
File size: 17,250 Bytes
781d374 40ac571 781d374 40ac571 781d374 40ac571 781d374 40ac571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import gradio as gr
import os
import numpy as np
import yaml
import cv2
import zipfile
from utils import process_video, get_npy_files, get_frame_count, process_image
from infer_script import run_inference
import time
import datetime
import shutil
import imageio
from media_pipe.draw_util import FaceMeshVisualizer
from download_models import download
# Download models and check for exists
download()
PROCESSED_VIDEO_DIR = './processed_videos'
TEMP_DIR = './temp'
INFER_CONFIG_PATH = './configs/infer.yaml'
MODEL_PATH = './ckpt_models/ckpts'
OUTPUT_PATH = './output'
def load_config():
with open(INFER_CONFIG_PATH, 'r') as file:
return yaml.safe_load(file)
def save_config(config):
with open(INFER_CONFIG_PATH, 'w') as file:
yaml.dump(config, file)
config = load_config()
def get_video_fps(video_path):
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
video.release()
return int(fps)
def update_npy_choices():
npy_files = get_npy_files(PROCESSED_VIDEO_DIR)
return gr.update(choices=["None"] + npy_files)
def create_gif_from_npy(npy_path, gif_path):
face_results = np.load(npy_path, allow_pickle=True)
vis = FaceMeshVisualizer(forehead_edge=False)
frames = []
for face_result in face_results:
width = face_result['width']
height = face_result['height']
lmks = face_result['lmks'].astype(np.float32)
frame = vis.draw_landmarks((width, height), lmks, normed=True)
frames.append(frame)
imageio.mimsave(gif_path, frames, 'GIF', duration=0.2, loop=0)
return gif_path
def show_gif_for_npy(npy_file, video_path):
if npy_file and npy_file != "None":
npy_path = npy_file
elif video_path:
video_name = os.path.splitext(os.path.basename(video_path))[0]
npy_path = os.path.join(PROCESSED_VIDEO_DIR if input_video_save.value else TEMP_DIR, video_name, f"{video_name}_mppose.npy")
else:
return None, None, "No NPY file or video selected"
if not os.path.exists(npy_path):
return None, None, "NPY file not found"
try:
gif_path = os.path.join(os.path.dirname(npy_path), f"{os.path.splitext(os.path.basename(npy_path))[0]}_preview.gif")
gif_path_align = os.path.join(os.path.dirname(npy_path), f"{os.path.splitext(os.path.basename(npy_path))[0]}_aligned.gif")
create_gif_from_npy(npy_path, gif_path)
return gif_path,gif_path_align, "GIF created and displayed"
except Exception as e:
return None, None, f"Failed to create GIF: {str(e)}"
def process_input_video(video, save_to_processed):
if video is None:
return "No video uploaded", None, gr.update(), gr.update()
video_name = os.path.splitext(os.path.basename(video))[0]
if save_to_processed:
save_dir = os.path.join(PROCESSED_VIDEO_DIR, video_name)
else:
save_dir = os.path.join(TEMP_DIR, video_name)
os.makedirs(save_dir, exist_ok=True)
npy_path, frame_count = process_video(video, save_dir)
frame_count = frame_count - 1
fps = get_video_fps(video)
return (f"Video processed. NPY file saved at {npy_path}. Original FPS: {fps}",
npy_path,
gr.update(maximum=frame_count, value=frame_count),
gr.update(value=f"Reference video FPS: {fps}"))
def update_frame_count(npy_file):
if npy_file is None or npy_file == "None":
return gr.update()
frame_count = get_frame_count(npy_file)
return gr.update(maximum=frame_count, value=frame_count)
def update_gif_on_video_change(video):
if video:
gif_path,gif_path_align, status = show_gif_for_npy(None, video)
return gif_path,gif_path_align, status
return None, None, "No video selected"
def toggle_fps_slider(use_custom):
return gr.update(interactive=use_custom)
def crop_face(image_path, should_crop_face, npy_file, video_path, expand_x, expand_y, offset_x, offset_y):
if not should_crop_face:
return image_path, "Face cropping not requested"
if npy_file and npy_file != "None":
npy_path = npy_file
elif video_path:
video_name = os.path.splitext(os.path.basename(video_path))[0]
npy_path = os.path.join(PROCESSED_VIDEO_DIR, video_name, f"{video_name}_mppose.npy")
if not os.path.exists(npy_path):
npy_path = os.path.join(TEMP_DIR, video_name, f"{video_name}_mppose.npy")
else:
return image_path, "No NPY file or video selected for face cropping"
if not os.path.exists(npy_path):
return image_path, "NPY file not found for face cropping"
save_dir = os.path.dirname(npy_path)
cropped_image_path, motion_path = process_image(image_path, npy_path, save_dir, expand_x, expand_y, offset_x, offset_y)
if cropped_image_path:
return cropped_image_path, "Face cropped successfully"
else:
return image_path, "Face cropping failed"
def preview_crop(image_path, npy_file, video_path, expand_x, expand_y, offset_x, offset_y):
if not image_path:
return None,None, "No image uploaded"
if npy_file and npy_file != "None":
npy_path = npy_file
elif video_path:
video_name = os.path.splitext(os.path.basename(video_path))[0]
npy_path = os.path.join(PROCESSED_VIDEO_DIR, video_name, f"{video_name}_mppose.npy")
if not os.path.exists(npy_path):
npy_path = os.path.join(TEMP_DIR, video_name, f"{video_name}_mppose.npy")
else:
return None,None, "No NPY file or video selected for face cropping"
if not os.path.exists(npy_path):
return None,None, "NPY file not found for face cropping"
save_dir = TEMP_DIR
# Create if not exists
os.makedirs(save_dir, exist_ok=True)
cropped_image_path, motion_path = process_image(image_path, npy_path, save_dir, expand_x, expand_y, offset_x, offset_y)
if cropped_image_path:
return cropped_image_path,motion_path, "Crop preview generated"
else:
return None,None, "Failed to generate crop preview"
def generate_video(input_img, should_crop_face, expand_x, expand_y, offset_x, offset_y, input_video_type, input_video, input_npy_select, input_npy, input_video_frames,
settings_steps, settings_cfg_scale, settings_seed, resolution_w, resolution_h,
model_step, custom_output_path, use_custom_fps, output_fps, callback_steps, context_frames, context_stride, context_overlap, context_batch_size, anomaly_action,intropolate_factor):
config['resolution_w'] = resolution_w
config['resolution_h'] = resolution_h
config['video_length'] = input_video_frames
save_config(config)
if input_video_type == "video":
video_name = os.path.splitext(os.path.basename(input_video))[0]
lmk_path = os.path.join(PROCESSED_VIDEO_DIR if input_video_save.value else TEMP_DIR, video_name, f"{video_name}_mppose.npy")
if not use_custom_fps:
output_fps = 7
else:
if input_npy_select != "None":
lmk_path = input_npy_select
else:
lmk_path = input_npy
video_name = os.path.splitext(os.path.basename(lmk_path))[0]
if not use_custom_fps:
output_fps = 7 # default FPS
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_folder = f"{video_name}_{timestamp}"
if custom_output_path:
output_path = os.path.join(custom_output_path, output_folder)
else:
output_path = os.path.join(OUTPUT_PATH, output_folder)
os.makedirs(output_path, exist_ok=True)
if should_crop_face:
cropped_image_path, crop_status = crop_face(input_img, should_crop_face, input_npy_select if input_video_type == "npy" else None, input_video if input_video_type == "video" else None, expand_x, expand_y, offset_x, offset_y)
print(crop_status)
if cropped_image_path and os.path.exists(cropped_image_path):
cropped_face_in_result = os.path.join(output_path, "cropped_face.png")
shutil.copy(cropped_image_path, cropped_face_in_result)
print(f"Cropped face saved in result folder: {cropped_face_in_result}")
input_img = cropped_image_path
status, oo_video_path, all_video_path = run_inference(
config_path=INFER_CONFIG_PATH,
model_path=MODEL_PATH,
input_path=input_img,
lmk_path=lmk_path,
output_path=output_path,
model_step=model_step,
seed=settings_seed,
resolution_w=resolution_w,
resolution_h=resolution_h,
video_length=input_video_frames,
num_inference_steps=settings_steps,
guidance_scale=settings_cfg_scale,
output_fps=output_fps,
callback_steps=callback_steps,
context_frames=context_frames,
context_stride=context_stride,
context_overlap=context_overlap,
context_batch_size=context_batch_size,
anomaly_action=anomaly_action,
interpolation_factor=intropolate_factor
)
frames_archive = None
frames_dir = os.path.join(output_path, f"frames")
if os.path.exists(frames_dir):
archive_path = os.path.join(output_path, f"frames.zip")
with zipfile.ZipFile(archive_path, 'w') as zipf:
for root, dirs, files in os.walk(frames_dir):
for file in files:
zipf.write(os.path.join(root, file),
os.path.relpath(os.path.join(root, file),
os.path.join(frames_dir, '..')))
frames_archive = archive_path
print(f"The archive has been created: {archive_path}")
else:
print(f"Directory with frames not found: {frames_dir}")
return status, oo_video_path, all_video_path, frames_archive
with gr.Blocks() as demo:
gr.Markdown("# FollowYourEmoji Webui")
with gr.Row():
with gr.Column(scale=1):
input_img = gr.Image(label="Upload reference image", type="filepath", height=500)
crop_face_checkbox = gr.Checkbox(label="Crop face according to video",info="If your picture is too far away or the face doesn't fit you can use cropping, you can see a preview in the tab below", value=False)
with gr.Accordion("Face Cropping", open=False):
expand_x = gr.Slider(label="Expand X", minimum=0.5, maximum=5.0, value=1.2, step=0.01)
expand_y = gr.Slider(label="Expand Y", minimum=0.5, maximum=5.0, value=1.2, step=0.01)
offset_x = gr.Slider(label="Offset X", minimum=-1, maximum=1, value=0.0, step=0.01)
offset_y = gr.Slider(label="Offset Y", minimum=-1, maximum=1, value=0.0, step=0.01)
preview_crop_btn = gr.Button(value="Preview Crop")
with gr.Row():
crop_preview = gr.Image(label="Crop Preview", height=300)
crop_preview_motion = gr.Image(label="Preview motion Crop", height=300)
with gr.Accordion("Input Video", open=True):
input_video_type = gr.Radio(label="Input reference video type",info="You can either upload the video through the interface or use an already compiled npy file", choices=["video","npy"], value="video")
with gr.Group() as video_group:
input_video = gr.Video(label="Upload reference video", height=500)
input_video_save = gr.Checkbox(label="Save video to processed video folder", value=True)
with gr.Group(visible=False) as npy_group:
input_npy_select = gr.Dropdown(label="Select from processed video folder", choices=["None"], value="None")
input_npy_refresh = gr.Button(value="Update NPY list")
input_npy = gr.File(file_types=[".npy"], label="Upload preprocessed video in .npy")
with gr.Accordion("Animation Preview",open=False):
show_gif_btn = gr.Button(value="Show Animation preview")
with gr.Row():
gif_output = gr.Image(label="GIF Preview", height=300)
gif_output_align = gr.Image(label="Aligned GIF Preview", height=300)
with gr.Accordion("Animation Settings", open=True):
input_video_frames = gr.Slider(label="Video frames", minimum=1, maximum=30, value=30, step=1)
settings_steps = gr.Slider(label="Steps", minimum=1, maximum=200, value=30)
settings_cfg_scale = gr.Slider(label="CFG scale", minimum=0.1, maximum=20, value=3.5, step=0.1)
settings_seed = gr.Slider(minimum=0, maximum=1000, value=42, step=1, label="Seed")
intropolate_factor = gr.Slider(label="Intropolate Factor Frames",info="This is the number of frames to interpolate between the frames", minimum=1, maximum=50, value=1, step=1)
use_custom_fps = gr.Checkbox(label="Use custom FPS",info="By default the FPS is set to 7", value=True)
with gr.Row():
output_fps = gr.Slider(label="Output FPS",info="if you upload video fps slider updates to video fps", minimum=1, maximum=240, value=15, step=1)
output_fps_info = gr.Label(value="This will be the FPS information of the video you uploaded")
with gr.Accordion("Generation Settings", open=True):
context_frames = gr.Slider(label="Context Frames", minimum=1, maximum=50, value=24, step=1)
context_stride = gr.Slider(label="Context Stride", minimum=1, maximum=10, value=1, step=1)
context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, value=4, step=1)
context_batch_size = gr.Slider(label="Context Batch Size", minimum=1, maximum=10, value=1, step=1)
callback_steps = gr.Slider(label="Callback Steps", minimum=1, maximum=50, value=1, step=1)
with gr.Accordion("Advanced Settings", open=False):
resolution_w = gr.Slider(label="Resolution Width", minimum=64, maximum=1024, value=config['resolution_w'], step=64)
resolution_h = gr.Slider(label="Resolution Height", minimum=64, maximum=1024, value=config['resolution_h'], step=64)
model_step = gr.Slider(label="Model Step", value=0, minimum=0, maximum=100)
custom_output_path = gr.Textbox(label="Custom Output Path", placeholder="Leave empty for default")
anomaly_action = gr.Radio(label="Anomaly Action",info="Sometimes a bad frame can slip through and this function will detect it and do what you specify", choices=["none", "remove"], value="none")
with gr.Column(scale=1):
result_status = gr.Label(value="Status")
result_video = gr.Video(label="Result Video (oo)", interactive=False, height=500)
result_video_2 = gr.Video(label="Result Video (all)", interactive=False, height=500)
result_btn = gr.Button(value="Generate Video")
frames_output = gr.File(label="Frames Archive ( You'll get an archive with all the frames )")
input_video_type.change(
fn=lambda x: (gr.update(visible=(x=="video")), gr.update(visible=(x=="npy"))),
inputs=[input_video_type],
outputs=[video_group, npy_group]
)
input_npy_refresh.click(fn=update_npy_choices, outputs=[input_npy_select])
input_video.change(
fn=process_input_video,
inputs=[input_video, input_video_save],
outputs=[result_status, input_npy, input_video_frames, output_fps_info]
)
input_npy_select.change(fn=update_frame_count, inputs=[input_npy_select], outputs=[input_video_frames])
input_npy.change(fn=update_frame_count, inputs=[input_npy], outputs=[input_video_frames])
show_gif_btn.click(fn=show_gif_for_npy, inputs=[input_npy_select, input_video], outputs=[gif_output, gif_output_align, result_status])
input_video.change(
fn=update_gif_on_video_change,
inputs=[input_video],
outputs=[gif_output,gif_output_align, result_status]
)
use_custom_fps.change(fn=toggle_fps_slider, inputs=[use_custom_fps], outputs=[output_fps])
preview_crop_btn.click(
fn=preview_crop,
inputs=[input_img, input_npy_select, input_video, expand_x, expand_y, offset_x, offset_y],
outputs=[crop_preview,crop_preview_motion, result_status]
)
result_btn.click(
fn=generate_video,
inputs=[input_img, crop_face_checkbox, expand_x, expand_y, offset_x, offset_y, input_video_type, input_video, input_npy_select, input_npy, input_video_frames,
settings_steps, settings_cfg_scale, settings_seed, resolution_w, resolution_h,
model_step, custom_output_path, use_custom_fps, output_fps, callback_steps, context_frames, context_stride, context_overlap, context_batch_size, anomaly_action,intropolate_factor],
outputs=[result_status, result_video, result_video_2, frames_output]
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Enable sharing")
args = parser.parse_args()
share = args.share
demo.queue()
demo.launch(inbrowser=True, share=share)
|