File size: 21,501 Bytes
f19ab94
 
 
 
 
 
 
 
 
 
 
 
 
 
a020cd9
781d374
40ac571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561bc60
40ac571
 
 
 
561bc60
 
 
 
 
 
 
 
 
 
f19ab94
 
 
 
561bc60
 
40ac571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f19ab94
40ac571
 
 
860f34d
 
 
 
40ac571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860f34d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ac571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781d374
 
561bc60
280372d
561bc60
 
 
 
 
 
 
f19ab94
 
 
 
280372d
5e56570
280372d
587e46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280372d
 
40ac571
561bc60
40ac571
280372d
 
 
561bc60
280372d
 
 
 
 
 
 
 
 
 
 
 
 
561bc60
 
 
 
 
 
 
 
 
 
 
 
 
280372d
 
40ac571
280372d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40ac571
 
 
 
280372d
 
 
 
 
 
 
 
40ac571
 
53da786
40ac571
 
280372d
 
 
40ac571
 
 
 
280372d
 
 
40ac571
 
 
 
 
 
 
 
 
 
 
 
561bc60
 
40ac571
 
 
 
 
561bc60
 
 
 
 
 
40ac571
 
 
 
 
 
 
 
 
 
 
 
561bc60
 
40ac571
 
 
 
 
 
 
561bc60
 
40ac571
280372d
 
 
 
 
 
 
 
 
 
 
 
 
 
781d374
 
40ac571
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Conditional import for ZeroGPU support
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
    import spaces
else:
    # Create a dummy spaces decorator for non-ZeroGPU environments
    class spaces:
        @staticmethod
        def GPU(*decorator_args, **decorator_kwargs):
            def decorator(func):
                def wrapper(*args, **kwargs):
                    return func(*args, **kwargs)
                return wrapper
            return decorator

import gradio as gr
import numpy as np
import yaml
import cv2
import zipfile
from utils import process_video, get_npy_files, get_frame_count, process_image
from infer_script import run_inference

import time
import datetime
import shutil

import imageio
from media_pipe.draw_util import FaceMeshVisualizer

from download_models import download 
import torch

# Download models and check for exists
download()

# Check GPU availability
print("="*50)
print("πŸ” GPU Status Check:")
print(f"   PyTorch version: {torch.__version__}")
print(f"   CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"   CUDA version: {torch.version.cuda}")
    print(f"   GPU device: {torch.cuda.get_device_name(0)}")
    print(f"   GPU count: {torch.cuda.device_count()}")
else:
    if os.environ.get("SPACES_ZERO_GPU"):
        print("   ℹ️  ZeroGPU mode - GPU will be allocated on-demand")
    else:
        print("   ⚠️  No CUDA GPU detected - will use CPU")
print("="*50)

PROCESSED_VIDEO_DIR = './processed_videos'
TEMP_DIR = './temp'
INFER_CONFIG_PATH = './configs/infer.yaml'
MODEL_PATH = './ckpt_models/ckpts'
OUTPUT_PATH = './output'

def load_config():
    with open(INFER_CONFIG_PATH, 'r') as file:
        return yaml.safe_load(file)

def save_config(config):
    with open(INFER_CONFIG_PATH, 'w') as file:
        yaml.dump(config, file)

config = load_config()

def get_video_fps(video_path):
    video = cv2.VideoCapture(video_path)
    fps = video.get(cv2.CAP_PROP_FPS)
    video.release()
    return int(fps)

def update_npy_choices():
    npy_files = get_npy_files(PROCESSED_VIDEO_DIR)
    return gr.update(choices=["None"] + npy_files)

def create_gif_from_npy(npy_path, gif_path):
    face_results = np.load(npy_path, allow_pickle=True)
    vis = FaceMeshVisualizer(forehead_edge=False)

    frames = []
    for face_result in face_results:
        width = face_result['width']
        height = face_result['height']
        lmks = face_result['lmks'].astype(np.float32)
        frame = vis.draw_landmarks((width, height), lmks, normed=True)
        frames.append(frame)

    imageio.mimsave(gif_path, frames, 'GIF', duration=0.2, loop=0)
    return gif_path

def show_gif_for_npy(npy_file, video_path):
    if npy_file and npy_file != "None":
        npy_path = npy_file
    elif video_path:
        video_name = os.path.splitext(os.path.basename(video_path))[0]
        npy_path = os.path.join(PROCESSED_VIDEO_DIR if input_video_save.value else TEMP_DIR, video_name, f"{video_name}_mppose.npy")
    else:
        return None, None, "No NPY file or video selected"

    if not os.path.exists(npy_path):
        return None, None, "NPY file not found"

    try:
        gif_path = os.path.join(os.path.dirname(npy_path), f"{os.path.splitext(os.path.basename(npy_path))[0]}_preview.gif")
        gif_path_align = os.path.join(os.path.dirname(npy_path), f"{os.path.splitext(os.path.basename(npy_path))[0]}_aligned.gif")
        create_gif_from_npy(npy_path, gif_path)
        return gif_path,gif_path_align, "GIF created and displayed"
    except Exception as e:
        return None, None, f"Failed to create GIF: {str(e)}"


def process_input_video(video, save_to_processed):
    if video is None:
        return "No video uploaded", None, gr.update(), gr.update()

    video_name = os.path.splitext(os.path.basename(video))[0]

    if save_to_processed:
        save_dir = os.path.join(PROCESSED_VIDEO_DIR, video_name)
    else:
        save_dir = os.path.join(TEMP_DIR, video_name)

    os.makedirs(save_dir, exist_ok=True)

    npy_path, frame_count = process_video(video, save_dir)
    frame_count = frame_count - 1
    fps = get_video_fps(video)

    return (f"Video processed. NPY file saved at {npy_path}. Original FPS: {fps}",
            npy_path,
            gr.update(maximum=frame_count, value=frame_count),
            gr.update(value=f"Reference video FPS: {fps}"))

def update_frame_count(npy_file):
    if npy_file is None or npy_file == "None":
        return gr.update()
    frame_count = get_frame_count(npy_file)
    return gr.update(maximum=frame_count, value=frame_count)

def update_gif_on_video_change(video):
    if video:
        gif_path,gif_path_align, status = show_gif_for_npy(None, video)
        return gif_path,gif_path_align, status
    return None, None, "No video selected"

def toggle_fps_slider(use_custom):
    return gr.update(interactive=use_custom)

def crop_face(image_path, should_crop_face, npy_file, video_path, expand_x, expand_y, offset_x, offset_y):
    if not should_crop_face:
        return image_path, "Face cropping not requested"

    if npy_file and npy_file != "None":
        npy_path = npy_file
    elif video_path:
        video_name = os.path.splitext(os.path.basename(video_path))[0]
        npy_path = os.path.join(PROCESSED_VIDEO_DIR, video_name, f"{video_name}_mppose.npy")
        if not os.path.exists(npy_path):
            npy_path = os.path.join(TEMP_DIR, video_name, f"{video_name}_mppose.npy")
    else:
        return image_path, "No NPY file or video selected for face cropping"

    if not os.path.exists(npy_path):
        return image_path, "NPY file not found for face cropping"

    save_dir = os.path.dirname(npy_path)
    cropped_image_path, motion_path = process_image(image_path, npy_path, save_dir, expand_x, expand_y, offset_x, offset_y)

    if cropped_image_path:
        return cropped_image_path, "Face cropped successfully"
    else:
        return image_path, "Face cropping failed"

def preview_crop(image_path, npy_file, video_path, expand_x, expand_y, offset_x, offset_y):
    if not image_path:
        return None,None, "No image uploaded"

    if npy_file and npy_file != "None":
        npy_path = npy_file
    elif video_path:
        video_name = os.path.splitext(os.path.basename(video_path))[0]
        npy_path = os.path.join(PROCESSED_VIDEO_DIR, video_name, f"{video_name}_mppose.npy")
        if not os.path.exists(npy_path):
            npy_path = os.path.join(TEMP_DIR, video_name, f"{video_name}_mppose.npy")
    else:
        return None,None, "No NPY file or video selected for face cropping"

    if not os.path.exists(npy_path):
        return None,None, "NPY file not found for face cropping"

    save_dir = TEMP_DIR
    # Create if not exists
    os.makedirs(save_dir, exist_ok=True)
    cropped_image_path, motion_path = process_image(image_path, npy_path, save_dir, expand_x, expand_y, offset_x, offset_y)

    if cropped_image_path:
        return cropped_image_path,motion_path, "Crop preview generated"
    else:
        return None,None, "Failed to generate crop preview"

@spaces.GPU(duration=300)
def generate_video(input_img, should_crop_face, expand_x, expand_y, offset_x, offset_y, input_video_type, input_video, input_npy_select, input_npy, input_video_frames,
                   settings_steps, settings_cfg_scale, settings_seed, resolution_w, resolution_h,
                   model_step, custom_output_path, use_custom_fps, output_fps, callback_steps, context_frames, context_stride, context_overlap, context_batch_size, anomaly_action,intropolate_factor):
    print("πŸš€ Generate Video started!")
    print(f"   Input image: {input_img}")
    print(f"   Video type: {input_video_type}")
    
    config['resolution_w'] = resolution_w
    config['resolution_h'] = resolution_h
    config['video_length'] = input_video_frames
    save_config(config)

    if input_video_type == "video":
        video_name = os.path.splitext(os.path.basename(input_video))[0]
        lmk_path = os.path.join(PROCESSED_VIDEO_DIR if input_video_save.value else TEMP_DIR, video_name, f"{video_name}_mppose.npy")
        if not use_custom_fps:
            output_fps = 7
    else:
        if input_npy_select != "None":
            lmk_path = input_npy_select
        else:
            lmk_path = input_npy
        video_name = os.path.splitext(os.path.basename(lmk_path))[0]
        if not use_custom_fps:
            output_fps = 7  # default FPS

    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    output_folder = f"{video_name}_{timestamp}"

    if custom_output_path:
        output_path = os.path.join(custom_output_path, output_folder)
    else:
        output_path = os.path.join(OUTPUT_PATH, output_folder)

    os.makedirs(output_path, exist_ok=True)

    if should_crop_face:
        cropped_image_path, crop_status = crop_face(input_img, should_crop_face, input_npy_select if input_video_type == "npy" else None, input_video if input_video_type == "video" else None, expand_x, expand_y, offset_x, offset_y)
        print(crop_status)

        if cropped_image_path and os.path.exists(cropped_image_path):
            cropped_face_in_result = os.path.join(output_path, "cropped_face.png")
            shutil.copy(cropped_image_path, cropped_face_in_result)
            print(f"Cropped face saved in result folder: {cropped_face_in_result}")

        input_img = cropped_image_path

    try:
        print("πŸ“ž Calling run_inference...")
        status, oo_video_path, all_video_path = run_inference(
            config_path=INFER_CONFIG_PATH,
            model_path=MODEL_PATH,
            input_path=input_img,
            lmk_path=lmk_path,
            output_path=output_path,
            model_step=model_step,
            seed=settings_seed,
            resolution_w=resolution_w,
            resolution_h=resolution_h,
            video_length=input_video_frames,
            num_inference_steps=settings_steps,
            guidance_scale=settings_cfg_scale,
            output_fps=output_fps,
            callback_steps=callback_steps,
            context_frames=context_frames,
            context_stride=context_stride,
            context_overlap=context_overlap,
            context_batch_size=context_batch_size,
            anomaly_action=anomaly_action,
            interpolation_factor=intropolate_factor
        )
        print(f"βœ… Inference completed! Status: {status}")
    except Exception as e:
        print(f"❌ Error in run_inference: {str(e)}")
        import traceback
        traceback.print_exc()
        return f"Error: {str(e)}", None, None, None


    frames_archive = None
    frames_dir = os.path.join(output_path, f"frames")
    if os.path.exists(frames_dir):
        archive_path = os.path.join(output_path, f"frames.zip")
        with zipfile.ZipFile(archive_path, 'w') as zipf:
            for root, dirs, files in os.walk(frames_dir):
                for file in files:
                    zipf.write(os.path.join(root, file),
                               os.path.relpath(os.path.join(root, file),
                                               os.path.join(frames_dir, '..')))
        frames_archive = archive_path
        print(f"The archive has been created: {archive_path}")
    else:
        print(f"Directory with frames not found: {frames_dir}")

    return status, oo_video_path, all_video_path, frames_archive

with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center;'>FollowYourEmoji</h1>")
    
    # GPU Status Display
    gpu_available = torch.cuda.is_available()
    gpu_info = ""
    if gpu_available:
        gpu_name = torch.cuda.get_device_name(0)
        gpu_info = f"πŸš€ **GPU Enabled**: {gpu_name}"
    else:
        if os.environ.get("SPACES_ZERO_GPU"):
            gpu_info = "⚑ **ZeroGPU Mode**: GPU will be allocated when generating"
        else:
            gpu_info = "⚠️ **Running on CPU** (Generation will be slower)"
    
    gr.Markdown(f"<div style='text-align: center; padding: 10px; background-color: #e8f5e9; border-radius: 5px; border: 1px solid #4caf50;'>{gpu_info}</div>")
    
    gr.Markdown("""
    <div style='text-align: center; padding: 20px; background-color: #f8f9fa; border-radius: 10px; margin: 10px 0; border: 2px solid #e0e0e0;'>
    
    ## πŸ“– How to Use This Demo
    
    Follow these simple steps to create your animated emoji video:
    
    **1. πŸ“Έ Upload Reference Image** β†’ Upload a portrait photo in the left panel  
    **2. 🎬 Upload Reference Video** β†’ Upload a video or select a preprocessed .npy file in the middle panel  
    **3. βœ‚οΈ Crop Face (Optional)** β†’ Enable face cropping to automatically fit the image to match the video motion  
    **4. πŸ‘οΈ Preview Animation** β†’ Click "Show Animation preview" to see how the motion will look  
    **5. βš™οΈ Adjust Settings** β†’ Fine-tune generation parameters at the bottom (steps, CFG scale, FPS, etc.)  
    **6. 🎨 Generate Video** β†’ Click "Generate Video" to create your animated result
    
    πŸ’‘ **Tips**: Use face cropping if your portrait is too far away β€’ Preview the animation before generating β€’ Try the examples below!
    
    </div>
    """)
    
    # Main Layout: 3 columns - Image, Video, Results
    with gr.Row():
        # Left Column: Image Upload
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“Έ Reference Image")
            input_img = gr.Image(label="Upload reference image", type="filepath", height=400)
        
        # Middle Column: Video Input, Crop Face, and Animation Preview
        with gr.Column(scale=1):
            gr.Markdown("### 🎬 Reference Video")
            input_video_type = gr.Radio(label="Input type", choices=["video","npy"], value="video")
            
            with gr.Group() as video_group:
                input_video = gr.Video(label="Upload reference video", height=400)
                input_video_save = gr.Checkbox(label="Save to processed folder", value=True)
            
            with gr.Group(visible=False) as npy_group:
                input_npy_select = gr.Dropdown(label="Select preprocessed NPY", choices=["None"], value="None")
                input_npy_refresh = gr.Button(value="Refresh NPY List")
                input_npy = gr.File(file_types=[".npy"], label="Upload .npy file")
            
            gr.Markdown("---")
            crop_face_checkbox = gr.Checkbox(label="βœ‚οΈ Crop face according to video",info="Enable this after uploading both image and video", value=False)
            with gr.Accordion("Face Cropping Settings", open=False):
                expand_x = gr.Slider(label="Expand X", minimum=0.5, maximum=5.0, value=1.2, step=0.01)
                expand_y = gr.Slider(label="Expand Y", minimum=0.5, maximum=5.0, value=1.2, step=0.01)
                offset_x = gr.Slider(label="Offset X", minimum=-1, maximum=1, value=0.0, step=0.01)
                offset_y = gr.Slider(label="Offset Y", minimum=-1, maximum=1, value=0.0, step=0.01)
                
                preview_crop_btn = gr.Button(value="Preview Crop", variant="secondary")
                with gr.Row():
                    crop_preview = gr.Image(label="Crop Preview", height=200)
                    crop_preview_motion = gr.Image(label="Motion Preview", height=200)
            
            with gr.Accordion("Animation Preview", open=False):
                show_gif_btn = gr.Button(value="Show Animation Preview", variant="secondary")
                with gr.Row():
                    gif_output = gr.Image(label="Motion Preview", height=200)
                    gif_output_align = gr.Image(label="Aligned Preview", height=200)
        
        # Right Column: Results
        with gr.Column(scale=1):
            gr.Markdown("### 🎨 Generated Results")
            result_status = gr.Label(value="Ready to generate")
            result_video = gr.Video(label="Result Video (Main)", interactive=False, height=400)
            result_video_2 = gr.Video(label="Result Video (Full)", interactive=False, height=400)
            frames_output = gr.File(label="Download Frames Archive")
    
    # Bottom Section: Settings and Generate Button
    with gr.Accordion("βš™οΈ Generation Settings", open=True):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("#### Animation Settings")
                input_video_frames = gr.Slider(label="Video frames", minimum=1, maximum=30, value=30, step=1)
                settings_steps = gr.Slider(label="Steps", minimum=1, maximum=200, value=30)
                settings_cfg_scale = gr.Slider(label="CFG scale", minimum=0.1, maximum=20, value=3.5, step=0.1)
                settings_seed = gr.Slider(minimum=0, maximum=1000, value=42, step=1, label="Seed")
                intropolate_factor = gr.Slider(label="Interpolate Factor",info="Number of frames to interpolate between frames", minimum=1, maximum=50, value=1, step=1)
                
                use_custom_fps = gr.Checkbox(label="Use custom FPS",info="By default FPS is 7", value=True)
                output_fps = gr.Slider(label="Output FPS",info="Automatically updates from uploaded video", minimum=1, maximum=240, value=15, step=1)
                output_fps_info = gr.Label(value="FPS info will appear here")
            
            with gr.Column(scale=1):
                gr.Markdown("#### Context Settings")
                context_frames = gr.Slider(label="Context Frames", minimum=1, maximum=50, value=24, step=1)
                context_stride = gr.Slider(label="Context Stride", minimum=1, maximum=10, value=1, step=1)
                context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=50, value=4, step=1)
                context_batch_size = gr.Slider(label="Context Batch Size", minimum=1, maximum=10, value=1, step=1)
                callback_steps = gr.Slider(label="Callback Steps", minimum=1, maximum=50, value=1, step=1)
            
            with gr.Column(scale=1):
                gr.Markdown("#### Advanced Settings")
                resolution_w = gr.Slider(label="Resolution Width", minimum=64, maximum=1024, value=config['resolution_w'], step=64)
                resolution_h = gr.Slider(label="Resolution Height", minimum=64, maximum=1024, value=config['resolution_h'], step=64)
                model_step = gr.Slider(label="Model Step", value=0, minimum=0, maximum=100)
                custom_output_path = gr.Textbox(label="Custom Output Path", placeholder="Leave empty for default")
                anomaly_action = gr.Radio(label="Anomaly Detection",info="Detect and handle bad frames", choices=["none", "remove"], value="none")
    
    result_btn = gr.Button(value="🎨 Generate Video", variant="primary", size="lg")

    input_video_type.change(
        fn=lambda x: (gr.update(visible=(x=="video")), gr.update(visible=(x=="npy"))),
        inputs=[input_video_type],
        outputs=[video_group, npy_group]
    )

    input_npy_refresh.click(fn=update_npy_choices, outputs=[input_npy_select])

    input_video.change(
        fn=process_input_video,
        inputs=[input_video, input_video_save],
        outputs=[result_status, input_npy, input_video_frames, output_fps_info],
        show_progress="full"
    )

    input_npy_select.change(fn=update_frame_count, inputs=[input_npy_select], outputs=[input_video_frames])
    input_npy.change(fn=update_frame_count, inputs=[input_npy], outputs=[input_video_frames])

    show_gif_btn.click(
        fn=show_gif_for_npy, 
        inputs=[input_npy_select, input_video], 
        outputs=[gif_output, gif_output_align, result_status],
        show_progress="full"
    )

    input_video.change(
        fn=update_gif_on_video_change,
        inputs=[input_video],
        outputs=[gif_output,gif_output_align, result_status]
    )

    use_custom_fps.change(fn=toggle_fps_slider, inputs=[use_custom_fps], outputs=[output_fps])

    preview_crop_btn.click(
        fn=preview_crop,
        inputs=[input_img, input_npy_select, input_video, expand_x, expand_y, offset_x, offset_y],
        outputs=[crop_preview,crop_preview_motion, result_status],
        show_progress="full"
    )

    result_btn.click(
        fn=generate_video,
        inputs=[input_img, crop_face_checkbox, expand_x, expand_y, offset_x, offset_y, input_video_type, input_video, input_npy_select, input_npy, input_video_frames,
            settings_steps, settings_cfg_scale, settings_seed, resolution_w, resolution_h,
            model_step, custom_output_path, use_custom_fps, output_fps, callback_steps, context_frames, context_stride, context_overlap, context_batch_size, anomaly_action,intropolate_factor],
        outputs=[result_status, result_video, result_video_2, frames_output],
        show_progress="full"
    )
    
    # Examples Section
    gr.Markdown("---")
    gr.Markdown("## 🎯 Examples")
    gr.Markdown("Click on an example below to quickly get started:")
    
    gr.Examples(
        examples=[
            ["example/s1.jpg", "example/temple_video.mp4"],
            ["example/123.png", "example/test.mp4"],
        ],
        inputs=[input_img, input_video],
        label="Try these examples"
    )

if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", help="Enable sharing")
    args = parser.parse_args()

    share = args.share

    demo.queue()
    demo.launch(inbrowser=True, share=share)