Spaces:
Sleeping
Sleeping
File size: 8,747 Bytes
40ac571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import imageio
import argparse
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
import torchvision.transforms as T
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPVisionModelWithProjection
from models.guider import Guider
from models.referencenet import ReferenceNet2DConditionModel
from models.unet import UNet3DConditionModel
from models.video_pipeline import VideoPipeline
from dataset.val_dataset import ValDataset, val_collate_fn
def load_model_state_dict(model, model_ckpt_path, name):
ckpt = torch.load(model_ckpt_path, map_location="cpu")
model_state_dict = model.state_dict()
model_new_sd = {}
count = 0
for k, v in ckpt.items():
if k in model_state_dict:
count += 1
model_new_sd[k] = v
miss, _ = model.load_state_dict(model_new_sd, strict=False)
print(f'load {name} from {model_ckpt_path}\n - load params: {count}\n - miss params: {miss}')
@torch.no_grad()
def visualize(dataloader, pipeline, generator, W, H, video_length, num_inference_steps, guidance_scale, output_dir, limit=1):
for i, batch in enumerate(dataloader):
ref_frame=batch['ref_frame'][0]
clip_image = batch['clip_image'][0]
motions=batch['motions'][0]
file_name = batch['file_name'][0]
if motions is None:
continue
if 'lmk_name' in batch:
lmk_name = batch['lmk_name'][0].split('.')[0]
else:
lmk_name = 'lmk'
print(file_name, lmk_name)
# tensor to pil image
ref_frame = torch.clamp((ref_frame + 1.0) / 2.0, min=0, max=1)
ref_frame = ref_frame.permute((1, 2, 3, 0)).squeeze()
ref_frame = (ref_frame * 255).cpu().numpy().astype(np.uint8)
ref_image = Image.fromarray(ref_frame)
# tensor to pil image
motions = motions.permute((1, 2, 3, 0))
motions = (motions * 255).cpu().numpy().astype(np.uint8)
lmk_images = []
for motion in motions:
lmk_images.append(Image.fromarray(motion))
preds = pipeline(ref_image=ref_image,
lmk_images=lmk_images,
width=W,
height=H,
video_length=video_length,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
clip_image=clip_image,
).videos
preds = preds.permute((0,2,3,4,1)).squeeze(0)
preds = (preds * 255).cpu().numpy().astype(np.uint8)
mp4_path = os.path.join(output_dir, lmk_name+'_'+file_name.split('.')[0]+'_oo.mp4')
mp4_writer = imageio.get_writer(mp4_path, fps=7)
for pred in preds:
mp4_writer.append_data(pred)
mp4_writer.close()
mp4_path = os.path.join(output_dir, lmk_name+'_'+file_name.split('.')[0]+'_all.mp4')
mp4_writer = imageio.get_writer(mp4_path, fps=8)
if 'frames' in batch:
frames = batch['frames'][0]
frames = torch.clamp((frames + 1.0) / 2.0, min=0, max=1)
frames = frames.permute((1, 2, 3, 0))
frames = (frames * 255).cpu().numpy().astype(np.uint8)
for frame, motion, pred in zip(frames, motions, preds):
out = np.concatenate((frame, motion, ref_frame, pred), axis=1)
mp4_writer.append_data(out)
else:
for motion, pred in zip(motions, preds):
out = np.concatenate((motion, ref_frame, pred), axis=1)
mp4_writer.append_data(out)
mp4_writer.close()
if i >= limit:
break
def main(args, config):
dist.init_process_group(backend='nccl')
local_rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
if dist.get_rank() == 0:
os.makedirs(args.output_path, exist_ok=True)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"Do not support weight dtype: {config.weight_dtype} during training")
# init model
print('init model')
vae = AutoencoderKL.from_pretrained(config.vae_model_path).to(dtype=weight_dtype, device="cuda")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(config.image_encoder_path).to(dtype=weight_dtype, device="cuda")
referencenet = ReferenceNet2DConditionModel.from_pretrained_2d(config.base_model_path,
referencenet_additional_kwargs=config.model.referencenet_additional_kwargs).to(device="cuda")
unet = UNet3DConditionModel.from_pretrained_2d(config.base_model_path,
motion_module_path=config.motion_module_path,
unet_additional_kwargs=config.model.unet_additional_kwargs).to(device="cuda")
lmk_guider = Guider(conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)).to(device="cuda")
# load model
print('load model')
load_model_state_dict(referencenet, f'{config.init_checkpoint}/referencenet.pth', 'referencenet')
load_model_state_dict(unet, f'{config.init_checkpoint}/unet.pth', 'unet')
load_model_state_dict(lmk_guider, f'{config.init_checkpoint}/lmk_guider.pth', 'lmk_guider')
if config.enable_xformers_memory_efficient_attention:
if is_xformers_available():
referencenet.enable_xformers_memory_efficient_attention()
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
unet.set_reentrant(use_reentrant=False)
referencenet.set_reentrant(use_reentrant=False)
vae.eval()
image_encoder.eval()
unet.eval()
referencenet.eval()
lmk_guider.eval()
# noise scheduler
print('init noise scheduler')
sched_kwargs = OmegaConf.to_container(config.scheduler)
if config.enable_zero_snr:
sched_kwargs.update(rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction")
noise_scheduler = DDIMScheduler(**sched_kwargs)
# pipeline
pipeline = VideoPipeline(vae=vae,
image_encoder=image_encoder,
referencenet=referencenet,
unet=unet,
lmk_guider=lmk_guider,
scheduler=noise_scheduler).to(vae.device, dtype=weight_dtype)
# dataset creation
print('init dataset')
val_dataset = ValDataset(
input_path=args.input_path,
lmk_path=args.lmk_path,
resolution_h=config.resolution_h,
resolution_w=config.resolution_w
)
print(len(val_dataset))
sampler = DistributedSampler(val_dataset, shuffle=False)
# DataLoaders creation:
val_dataloader = DataLoader(
val_dataset,
batch_size=1,
num_workers=0,
sampler=sampler,
collate_fn=val_collate_fn,
)
generator = torch.Generator(device=vae.device)
generator.manual_seed(config.seed)
# run visualize
print('run visualize')
with torch.no_grad():
visualize(val_dataloader,
pipeline,
generator,
W=config.resolution_w,
H=config.resolution_h,
video_length=config.video_length,
num_inference_steps=30,
guidance_scale=3.5,
output_dir=args.output_path,
limit=100000000)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument('--model_step', type=int, required=True)
parser.add_argument('--output_path', type=str, required=True)
parser.add_argument('--input_path', type=str, required=True)
parser.add_argument('--lmk_path', type=str, required=True)
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
config = OmegaConf.load(args.config)
config.init_checkpoint = args.model_path
config.init_num = args.model_step
main(args, config) |