File size: 8,747 Bytes
40ac571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import imageio
import argparse
import numpy as np
from PIL import Image
from omegaconf import OmegaConf

import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
import torchvision.transforms as T

from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available

from transformers import CLIPVisionModelWithProjection

from models.guider import Guider
from models.referencenet import ReferenceNet2DConditionModel
from models.unet import UNet3DConditionModel
from models.video_pipeline import VideoPipeline

from dataset.val_dataset import ValDataset, val_collate_fn


def load_model_state_dict(model, model_ckpt_path, name):
    ckpt = torch.load(model_ckpt_path, map_location="cpu")
    model_state_dict = model.state_dict()
    model_new_sd = {}
    count = 0
    for k, v in ckpt.items():
        if k in model_state_dict:
            count += 1
            model_new_sd[k] = v
    miss, _ = model.load_state_dict(model_new_sd, strict=False)
    print(f'load {name} from {model_ckpt_path}\n - load params: {count}\n - miss params: {miss}')


@torch.no_grad()
def visualize(dataloader, pipeline, generator, W, H, video_length, num_inference_steps, guidance_scale, output_dir, limit=1):

    for i, batch in enumerate(dataloader):
        ref_frame=batch['ref_frame'][0]
        clip_image = batch['clip_image'][0]
        motions=batch['motions'][0]
        file_name = batch['file_name'][0]
        if motions is None:
            continue
        if 'lmk_name' in batch:
            lmk_name = batch['lmk_name'][0].split('.')[0]
        else:
            lmk_name = 'lmk'
        print(file_name, lmk_name)
        # tensor to pil image
        ref_frame = torch.clamp((ref_frame + 1.0) / 2.0, min=0, max=1)
        ref_frame = ref_frame.permute((1, 2, 3, 0)).squeeze()
        ref_frame = (ref_frame * 255).cpu().numpy().astype(np.uint8)
        ref_image = Image.fromarray(ref_frame)
        # tensor to pil image
        motions = motions.permute((1, 2, 3, 0))
        motions = (motions * 255).cpu().numpy().astype(np.uint8)
        lmk_images = []
        for motion in motions:
            lmk_images.append(Image.fromarray(motion))

        preds = pipeline(ref_image=ref_image,
                        lmk_images=lmk_images,
                        width=W,
                        height=H,
                        video_length=video_length,
                        num_inference_steps=num_inference_steps,
                        guidance_scale=guidance_scale,
                        generator=generator,
                        clip_image=clip_image,
                        ).videos
        
        preds = preds.permute((0,2,3,4,1)).squeeze(0)
        preds = (preds * 255).cpu().numpy().astype(np.uint8)

        mp4_path = os.path.join(output_dir, lmk_name+'_'+file_name.split('.')[0]+'_oo.mp4')
        mp4_writer = imageio.get_writer(mp4_path, fps=7)
        for pred in preds:
            mp4_writer.append_data(pred)
        mp4_writer.close()

        mp4_path = os.path.join(output_dir, lmk_name+'_'+file_name.split('.')[0]+'_all.mp4')
        mp4_writer = imageio.get_writer(mp4_path, fps=8)
        if 'frames' in batch:
            frames = batch['frames'][0]
            frames = torch.clamp((frames + 1.0) / 2.0, min=0, max=1)
            frames = frames.permute((1, 2, 3, 0))
            frames = (frames * 255).cpu().numpy().astype(np.uint8)
            for frame, motion, pred in zip(frames, motions, preds):
                out = np.concatenate((frame, motion, ref_frame, pred), axis=1)
                mp4_writer.append_data(out)
        else:
            for motion, pred in zip(motions, preds):
                out = np.concatenate((motion, ref_frame, pred), axis=1)
                mp4_writer.append_data(out)
        mp4_writer.close()

        if i >= limit:
            break


def main(args, config):
    dist.init_process_group(backend='nccl')

    local_rank = int(os.environ['LOCAL_RANK'])
    torch.cuda.set_device(local_rank)

    if dist.get_rank() == 0:
        os.makedirs(args.output_path, exist_ok=True)

    if config.weight_dtype == "fp16":
        weight_dtype = torch.float16
    elif config.weight_dtype == "fp32":
        weight_dtype = torch.float32
    else:
        raise ValueError(f"Do not support weight dtype: {config.weight_dtype} during training")

    # init model
    print('init model')
    vae = AutoencoderKL.from_pretrained(config.vae_model_path).to(dtype=weight_dtype, device="cuda")

    image_encoder = CLIPVisionModelWithProjection.from_pretrained(config.image_encoder_path).to(dtype=weight_dtype, device="cuda")

    referencenet = ReferenceNet2DConditionModel.from_pretrained_2d(config.base_model_path,
                                                                   referencenet_additional_kwargs=config.model.referencenet_additional_kwargs).to(device="cuda")
    unet = UNet3DConditionModel.from_pretrained_2d(config.base_model_path,
                                                   motion_module_path=config.motion_module_path,
                                                   unet_additional_kwargs=config.model.unet_additional_kwargs).to(device="cuda")

    lmk_guider = Guider(conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)).to(device="cuda")

    # load model
    print('load model')
    load_model_state_dict(referencenet, f'{config.init_checkpoint}/referencenet.pth', 'referencenet')
    load_model_state_dict(unet, f'{config.init_checkpoint}/unet.pth', 'unet')
    load_model_state_dict(lmk_guider, f'{config.init_checkpoint}/lmk_guider.pth', 'lmk_guider')

    if config.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            referencenet.enable_xformers_memory_efficient_attention()
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    unet.set_reentrant(use_reentrant=False)
    referencenet.set_reentrant(use_reentrant=False)

    vae.eval()
    image_encoder.eval()
    unet.eval()
    referencenet.eval()
    lmk_guider.eval()

    # noise scheduler
    print('init noise scheduler')
    sched_kwargs = OmegaConf.to_container(config.scheduler)
    if config.enable_zero_snr:
        sched_kwargs.update(rescale_betas_zero_snr=True,
                            timestep_spacing="trailing",
                            prediction_type="v_prediction")
    noise_scheduler = DDIMScheduler(**sched_kwargs)

    # pipeline
    pipeline = VideoPipeline(vae=vae,
                             image_encoder=image_encoder,
                             referencenet=referencenet,
                             unet=unet,
                             lmk_guider=lmk_guider,
                             scheduler=noise_scheduler).to(vae.device, dtype=weight_dtype)

    # dataset creation
    print('init dataset')
    val_dataset = ValDataset(
        input_path=args.input_path,
        lmk_path=args.lmk_path,
        resolution_h=config.resolution_h,
        resolution_w=config.resolution_w
    )
    print(len(val_dataset))
    sampler = DistributedSampler(val_dataset, shuffle=False)
    # DataLoaders creation:
    val_dataloader = DataLoader(
        val_dataset,
        batch_size=1,
        num_workers=0,
        sampler=sampler,
        collate_fn=val_collate_fn,
    )

    generator = torch.Generator(device=vae.device)
    generator.manual_seed(config.seed)
    
    # run visualize
    print('run visualize')
    with torch.no_grad():
        visualize(val_dataloader, 
                pipeline, 
                generator, 
                W=config.resolution_w, 
                H=config.resolution_h, 
                video_length=config.video_length,
                num_inference_steps=30, 
                guidance_scale=3.5,
                output_dir=args.output_path,
                limit=100000000)
    

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, required=True)
    parser.add_argument('--model_path', type=str, required=True)
    parser.add_argument('--model_step', type=int, required=True)
    parser.add_argument('--output_path', type=str, required=True)
    parser.add_argument('--input_path', type=str, required=True)
    parser.add_argument('--lmk_path', type=str, required=True)
    parser.add_argument('--seed', type=int, default=42)
    args = parser.parse_args()

    config = OmegaConf.load(args.config)
    config.init_checkpoint = args.model_path
    config.init_num = args.model_step

    main(args, config)