Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from ..utils import USE_PEFT_BACKEND | |
| from .lora import LoRACompatibleLinear | |
| ACTIVATION_FUNCTIONS = { | |
| "swish": nn.SiLU(), | |
| "silu": nn.SiLU(), | |
| "mish": nn.Mish(), | |
| "gelu": nn.GELU(), | |
| "relu": nn.ReLU(), | |
| } | |
| def get_activation(act_fn: str) -> nn.Module: | |
| """Helper function to get activation function from string. | |
| Args: | |
| act_fn (str): Name of activation function. | |
| Returns: | |
| nn.Module: Activation function. | |
| """ | |
| act_fn = act_fn.lower() | |
| if act_fn in ACTIVATION_FUNCTIONS: | |
| return ACTIVATION_FUNCTIONS[act_fn] | |
| else: | |
| raise ValueError(f"Unsupported activation function: {act_fn}") | |
| class GELU(nn.Module): | |
| r""" | |
| GELU activation function with tanh approximation support with `approximate="tanh"`. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out) | |
| self.approximate = approximate | |
| def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
| if gate.device.type != "mps": | |
| return F.gelu(gate, approximate=self.approximate) | |
| # mps: gelu is not implemented for float16 | |
| return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) | |
| def forward(self, hidden_states): | |
| hidden_states = self.proj(hidden_states) | |
| hidden_states = self.gelu(hidden_states) | |
| return hidden_states | |
| class GEGLU(nn.Module): | |
| r""" | |
| A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int): | |
| super().__init__() | |
| linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear | |
| self.proj = linear_cls(dim_in, dim_out * 2) | |
| def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
| if gate.device.type != "mps": | |
| return F.gelu(gate) | |
| # mps: gelu is not implemented for float16 | |
| return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
| def forward(self, hidden_states, scale: float = 1.0): | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1) | |
| return hidden_states * self.gelu(gate) | |
| class ApproximateGELU(nn.Module): | |
| r""" | |
| The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this | |
| [paper](https://arxiv.org/abs/1606.08415). | |
| Parameters: | |
| dim_in (`int`): The number of channels in the input. | |
| dim_out (`int`): The number of channels in the output. | |
| """ | |
| def __init__(self, dim_in: int, dim_out: int): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.proj(x) | |
| return x * torch.sigmoid(1.702 * x) | |