Spaces:
Sleeping
Sleeping
| import math | |
| import numpy as np | |
| from scipy.spatial.transform import Rotation as R | |
| def create_perspective_matrix(aspect_ratio): | |
| kDegreesToRadians = np.pi / 180. | |
| near = 1 | |
| far = 10000 | |
| perspective_matrix = np.zeros(16, dtype=np.float32) | |
| # Standard perspective projection matrix calculations. | |
| f = 1.0 / np.tan(kDegreesToRadians * 63 / 2.) | |
| denom = 1.0 / (near - far) | |
| perspective_matrix[0] = f / aspect_ratio | |
| perspective_matrix[5] = f | |
| perspective_matrix[10] = (near + far) * denom | |
| perspective_matrix[11] = -1. | |
| perspective_matrix[14] = 1. * far * near * denom | |
| # If the environment's origin point location is in the top left corner, | |
| # then skip additional flip along Y-axis is required to render correctly. | |
| perspective_matrix[5] *= -1. | |
| return perspective_matrix | |
| def project_points(points_3d, transformation_matrix, pose_vectors, image_shape): | |
| P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T | |
| L, N, _ = points_3d.shape | |
| projected_points = np.zeros((L, N, 2)) | |
| for i in range(L): | |
| points_3d_frame = points_3d[i] | |
| ones = np.ones((points_3d_frame.shape[0], 1)) | |
| points_3d_homogeneous = np.hstack([points_3d_frame, ones]) | |
| transformed_points = points_3d_homogeneous @ (transformation_matrix @ euler_and_translation_to_matrix(pose_vectors[i][:3], pose_vectors[i][3:])).T @ P | |
| projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1 | |
| projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] | |
| projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] | |
| projected_points[i] = projected_points_frame | |
| return projected_points | |
| def project_points_with_trans(points_3d, transformation_matrix, image_shape): | |
| P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T | |
| L, N, _ = points_3d.shape | |
| projected_points = np.zeros((L, N, 2)) | |
| for i in range(L): | |
| points_3d_frame = points_3d[i] | |
| ones = np.ones((points_3d_frame.shape[0], 1)) | |
| points_3d_homogeneous = np.hstack([points_3d_frame, ones]) | |
| transformed_points = points_3d_homogeneous @ transformation_matrix[i].T @ P | |
| projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1 | |
| projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] | |
| projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] | |
| projected_points[i] = projected_points_frame | |
| return projected_points | |
| def euler_and_translation_to_matrix(euler_angles, translation_vector): | |
| rotation = R.from_euler('xyz', euler_angles, degrees=True) | |
| rotation_matrix = rotation.as_matrix() | |
| matrix = np.eye(4) | |
| matrix[:3, :3] = rotation_matrix | |
| matrix[:3, 3] = translation_vector | |
| return matrix | |
| def matrix_to_euler_and_translation(matrix): | |
| rotation_matrix = matrix[:3, :3] | |
| translation_vector = matrix[:3, 3] | |
| rotation = R.from_matrix(rotation_matrix) | |
| euler_angles = rotation.as_euler('xyz', degrees=True) | |
| return euler_angles, translation_vector |