Spaces:
Sleeping
Sleeping
| import inspect | |
| from typing import Callable, List, Optional, Union | |
| import PIL.Image | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel | |
| from ...models import AutoencoderKL, UNet2DConditionModel | |
| from ...schedulers import KarrasDiffusionSchedulers | |
| from ...utils import logging | |
| from ..pipeline_utils import DiffusionPipeline | |
| from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline | |
| from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline | |
| from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class VersatileDiffusionPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
| about a model's potential harms. | |
| feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
| A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
| """ | |
| tokenizer: CLIPTokenizer | |
| image_feature_extractor: CLIPImageProcessor | |
| text_encoder: CLIPTextModel | |
| image_encoder: CLIPVisionModel | |
| image_unet: UNet2DConditionModel | |
| text_unet: UNet2DConditionModel | |
| vae: AutoencoderKL | |
| scheduler: KarrasDiffusionSchedulers | |
| def __init__( | |
| self, | |
| tokenizer: CLIPTokenizer, | |
| image_feature_extractor: CLIPImageProcessor, | |
| text_encoder: CLIPTextModel, | |
| image_encoder: CLIPVisionModel, | |
| image_unet: UNet2DConditionModel, | |
| text_unet: UNet2DConditionModel, | |
| vae: AutoencoderKL, | |
| scheduler: KarrasDiffusionSchedulers, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, | |
| image_feature_extractor=image_feature_extractor, | |
| text_encoder=text_encoder, | |
| image_encoder=image_encoder, | |
| image_unet=image_unet, | |
| text_unet=text_unet, | |
| vae=vae, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def image_variation( | |
| self, | |
| image: Union[torch.FloatTensor, PIL.Image.Image], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): | |
| The image prompt or prompts to guide the image generation. | |
| height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| Examples: | |
| ```py | |
| >>> from diffusers import VersatileDiffusionPipeline | |
| >>> import torch | |
| >>> import requests | |
| >>> from io import BytesIO | |
| >>> from PIL import Image | |
| >>> # let's download an initial image | |
| >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" | |
| >>> response = requests.get(url) | |
| >>> image = Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> pipe = VersatileDiffusionPipeline.from_pretrained( | |
| ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> generator = torch.Generator(device="cuda").manual_seed(0) | |
| >>> image = pipe.image_variation(image, generator=generator).images[0] | |
| >>> image.save("./car_variation.png") | |
| ``` | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys() | |
| components = {name: component for name, component in self.components.items() if name in expected_components} | |
| return VersatileDiffusionImageVariationPipeline(**components)( | |
| image=image, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| negative_prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| latents=latents, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| callback=callback, | |
| callback_steps=callback_steps, | |
| ) | |
| def text_to_image( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide image generation. | |
| height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| Examples: | |
| ```py | |
| >>> from diffusers import VersatileDiffusionPipeline | |
| >>> import torch | |
| >>> pipe = VersatileDiffusionPipeline.from_pretrained( | |
| ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> generator = torch.Generator(device="cuda").manual_seed(0) | |
| >>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0] | |
| >>> image.save("./astronaut.png") | |
| ``` | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| """ | |
| expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() | |
| components = {name: component for name, component in self.components.items() if name in expected_components} | |
| temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) | |
| output = temp_pipeline( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| negative_prompt=negative_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| latents=latents, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| callback=callback, | |
| callback_steps=callback_steps, | |
| ) | |
| # swap the attention blocks back to the original state | |
| temp_pipeline._swap_unet_attention_blocks() | |
| return output | |
| def dual_guided( | |
| self, | |
| prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], | |
| image: Union[str, List[str]], | |
| text_to_image_strength: float = 0.5, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide image generation. | |
| height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| Examples: | |
| ```py | |
| >>> from diffusers import VersatileDiffusionPipeline | |
| >>> import torch | |
| >>> import requests | |
| >>> from io import BytesIO | |
| >>> from PIL import Image | |
| >>> # let's download an initial image | |
| >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" | |
| >>> response = requests.get(url) | |
| >>> image = Image.open(BytesIO(response.content)).convert("RGB") | |
| >>> text = "a red car in the sun" | |
| >>> pipe = VersatileDiffusionPipeline.from_pretrained( | |
| ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe = pipe.to("cuda") | |
| >>> generator = torch.Generator(device="cuda").manual_seed(0) | |
| >>> text_to_image_strength = 0.75 | |
| >>> image = pipe.dual_guided( | |
| ... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator | |
| ... ).images[0] | |
| >>> image.save("./car_variation.png") | |
| ``` | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
| returned where the first element is a list with the generated images. | |
| """ | |
| expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() | |
| components = {name: component for name, component in self.components.items() if name in expected_components} | |
| temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) | |
| output = temp_pipeline( | |
| prompt=prompt, | |
| image=image, | |
| text_to_image_strength=text_to_image_strength, | |
| height=height, | |
| width=width, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=num_images_per_prompt, | |
| eta=eta, | |
| generator=generator, | |
| latents=latents, | |
| output_type=output_type, | |
| return_dict=return_dict, | |
| callback=callback, | |
| callback_steps=callback_steps, | |
| ) | |
| temp_pipeline._revert_dual_attention() | |
| return output | |