FollowYourEmoji / infer.py
learnmlf's picture
feat: add emoji
40ac571
import os
import imageio
import argparse
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import torch
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
import torchvision.transforms as T
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPVisionModelWithProjection
from models.guider import Guider
from models.referencenet import ReferenceNet2DConditionModel
from models.unet import UNet3DConditionModel
from models.video_pipeline import VideoPipeline
from dataset.val_dataset import ValDataset, val_collate_fn
def load_model_state_dict(model, model_ckpt_path, name):
ckpt = torch.load(model_ckpt_path, map_location="cpu")
model_state_dict = model.state_dict()
model_new_sd = {}
count = 0
for k, v in ckpt.items():
if k in model_state_dict:
count += 1
model_new_sd[k] = v
miss, _ = model.load_state_dict(model_new_sd, strict=False)
print(f'load {name} from {model_ckpt_path}\n - load params: {count}\n - miss params: {miss}')
@torch.no_grad()
def visualize(dataloader, pipeline, generator, W, H, video_length, num_inference_steps, guidance_scale, output_dir, limit=1):
for i, batch in enumerate(dataloader):
ref_frame=batch['ref_frame'][0]
clip_image = batch['clip_image'][0]
motions=batch['motions'][0]
file_name = batch['file_name'][0]
if motions is None:
continue
if 'lmk_name' in batch:
lmk_name = batch['lmk_name'][0].split('.')[0]
else:
lmk_name = 'lmk'
print(file_name, lmk_name)
# tensor to pil image
ref_frame = torch.clamp((ref_frame + 1.0) / 2.0, min=0, max=1)
ref_frame = ref_frame.permute((1, 2, 3, 0)).squeeze()
ref_frame = (ref_frame * 255).cpu().numpy().astype(np.uint8)
ref_image = Image.fromarray(ref_frame)
# tensor to pil image
motions = motions.permute((1, 2, 3, 0))
motions = (motions * 255).cpu().numpy().astype(np.uint8)
lmk_images = []
for motion in motions:
lmk_images.append(Image.fromarray(motion))
preds = pipeline(ref_image=ref_image,
lmk_images=lmk_images,
width=W,
height=H,
video_length=video_length,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
clip_image=clip_image,
).videos
preds = preds.permute((0,2,3,4,1)).squeeze(0)
preds = (preds * 255).cpu().numpy().astype(np.uint8)
mp4_path = os.path.join(output_dir, lmk_name+'_'+file_name.split('.')[0]+'_oo.mp4')
mp4_writer = imageio.get_writer(mp4_path, fps=7)
for pred in preds:
mp4_writer.append_data(pred)
mp4_writer.close()
mp4_path = os.path.join(output_dir, lmk_name+'_'+file_name.split('.')[0]+'_all.mp4')
mp4_writer = imageio.get_writer(mp4_path, fps=8)
if 'frames' in batch:
frames = batch['frames'][0]
frames = torch.clamp((frames + 1.0) / 2.0, min=0, max=1)
frames = frames.permute((1, 2, 3, 0))
frames = (frames * 255).cpu().numpy().astype(np.uint8)
for frame, motion, pred in zip(frames, motions, preds):
out = np.concatenate((frame, motion, ref_frame, pred), axis=1)
mp4_writer.append_data(out)
else:
for motion, pred in zip(motions, preds):
out = np.concatenate((motion, ref_frame, pred), axis=1)
mp4_writer.append_data(out)
mp4_writer.close()
if i >= limit:
break
def main(args, config):
dist.init_process_group(backend='nccl')
local_rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
if dist.get_rank() == 0:
os.makedirs(args.output_path, exist_ok=True)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"Do not support weight dtype: {config.weight_dtype} during training")
# init model
print('init model')
vae = AutoencoderKL.from_pretrained(config.vae_model_path).to(dtype=weight_dtype, device="cuda")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(config.image_encoder_path).to(dtype=weight_dtype, device="cuda")
referencenet = ReferenceNet2DConditionModel.from_pretrained_2d(config.base_model_path,
referencenet_additional_kwargs=config.model.referencenet_additional_kwargs).to(device="cuda")
unet = UNet3DConditionModel.from_pretrained_2d(config.base_model_path,
motion_module_path=config.motion_module_path,
unet_additional_kwargs=config.model.unet_additional_kwargs).to(device="cuda")
lmk_guider = Guider(conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)).to(device="cuda")
# load model
print('load model')
load_model_state_dict(referencenet, f'{config.init_checkpoint}/referencenet.pth', 'referencenet')
load_model_state_dict(unet, f'{config.init_checkpoint}/unet.pth', 'unet')
load_model_state_dict(lmk_guider, f'{config.init_checkpoint}/lmk_guider.pth', 'lmk_guider')
if config.enable_xformers_memory_efficient_attention:
if is_xformers_available():
referencenet.enable_xformers_memory_efficient_attention()
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
unet.set_reentrant(use_reentrant=False)
referencenet.set_reentrant(use_reentrant=False)
vae.eval()
image_encoder.eval()
unet.eval()
referencenet.eval()
lmk_guider.eval()
# noise scheduler
print('init noise scheduler')
sched_kwargs = OmegaConf.to_container(config.scheduler)
if config.enable_zero_snr:
sched_kwargs.update(rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction")
noise_scheduler = DDIMScheduler(**sched_kwargs)
# pipeline
pipeline = VideoPipeline(vae=vae,
image_encoder=image_encoder,
referencenet=referencenet,
unet=unet,
lmk_guider=lmk_guider,
scheduler=noise_scheduler).to(vae.device, dtype=weight_dtype)
# dataset creation
print('init dataset')
val_dataset = ValDataset(
input_path=args.input_path,
lmk_path=args.lmk_path,
resolution_h=config.resolution_h,
resolution_w=config.resolution_w
)
print(len(val_dataset))
sampler = DistributedSampler(val_dataset, shuffle=False)
# DataLoaders creation:
val_dataloader = DataLoader(
val_dataset,
batch_size=1,
num_workers=0,
sampler=sampler,
collate_fn=val_collate_fn,
)
generator = torch.Generator(device=vae.device)
generator.manual_seed(config.seed)
# run visualize
print('run visualize')
with torch.no_grad():
visualize(val_dataloader,
pipeline,
generator,
W=config.resolution_w,
H=config.resolution_h,
video_length=config.video_length,
num_inference_steps=30,
guidance_scale=3.5,
output_dir=args.output_path,
limit=100000000)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument('--model_step', type=int, required=True)
parser.add_argument('--output_path', type=str, required=True)
parser.add_argument('--input_path', type=str, required=True)
parser.add_argument('--lmk_path', type=str, required=True)
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
config = OmegaConf.load(args.config)
config.init_checkpoint = args.model_path
config.init_num = args.model_step
main(args, config)