Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -49,48 +49,58 @@ id2label = {
|
|
| 49 |
# Source: https://blog.jcharistech.com/2021/01/21/how-to-save-uploaded-files-to-directory-in-streamlit-apps/
|
| 50 |
|
| 51 |
# Store uploaded file temporarily in directory to get file path (necessary for processing)
|
| 52 |
-
def save_uploadedfile(upl_file):
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
if uploaded_file is not None:
|
| 58 |
-
# Save the file
|
| 59 |
-
file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type}
|
| 60 |
-
save_uploadedfile(uploaded_file)
|
| 61 |
|
| 62 |
-
#
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
-
### Make predictions
|
| 68 |
-
preds = vg_model(par_list)
|
| 69 |
|
| 70 |
-
# Get label names
|
| 71 |
-
preds_list = preds.tolist()
|
| 72 |
|
| 73 |
-
predictions_names=[]
|
| 74 |
|
| 75 |
-
# loop through each prediction
|
| 76 |
-
for ele in preds_list:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
-
# Combine the paragraphs and labels to a dataframe
|
| 88 |
-
df_predictions = pd.DataFrame({'Paragraph': par_list, 'Prediction': predictions_names})
|
| 89 |
|
| 90 |
-
# Drop all "Other" and "NA" predictions
|
| 91 |
-
filtered_df = df[df['Prediction'].isin(['Other', 'NA'])]
|
| 92 |
|
| 93 |
|
| 94 |
-
#####################################
|
| 95 |
-
st.write(df)
|
| 96 |
|
|
|
|
| 49 |
# Source: https://blog.jcharistech.com/2021/01/21/how-to-save-uploaded-files-to-directory-in-streamlit-apps/
|
| 50 |
|
| 51 |
# Store uploaded file temporarily in directory to get file path (necessary for processing)
|
| 52 |
+
# def save_uploadedfile(upl_file):
|
| 53 |
+
# with open(os.path.join("tempDir",upl_file.name),"wb") as f:
|
| 54 |
+
# f.write(upl_file.getbuffer())
|
| 55 |
+
# return st.success("Saved File:{} to tempDir".format(upl_file.name))
|
| 56 |
+
|
| 57 |
+
# if uploaded_file is not None:
|
| 58 |
+
# # Save the file
|
| 59 |
+
# file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type}
|
| 60 |
+
# save_uploadedfile(uploaded_file)
|
| 61 |
+
|
| 62 |
+
# #Get the file path
|
| 63 |
+
|
| 64 |
+
file = st.file_uploader("File upload", type=["pdf"])
|
| 65 |
|
| 66 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
# Retrieve the file name
|
| 69 |
+
with tempfile.NamedTemporaryFile(mode="wb") as temp:
|
| 70 |
+
bytes_data = files.getvalue()
|
| 71 |
+
temp.write(bytes_data)
|
| 72 |
+
print(temp.name)
|
| 73 |
|
| 74 |
+
# # Process file
|
| 75 |
+
# par_list = get_paragraphs(uploaded_file)
|
| 76 |
|
| 77 |
+
# ### Make predictions
|
| 78 |
+
# preds = vg_model(par_list)
|
| 79 |
|
| 80 |
+
# # Get label names
|
| 81 |
+
# preds_list = preds.tolist()
|
| 82 |
|
| 83 |
+
# predictions_names=[]
|
| 84 |
|
| 85 |
+
# # loop through each prediction
|
| 86 |
+
# for ele in preds_list:
|
| 87 |
+
# try:
|
| 88 |
+
# index_of_one = ele.index(1)
|
| 89 |
+
# except ValueError:
|
| 90 |
+
# index_of_one = "NA"
|
| 91 |
+
# if index_of_one != "NA":
|
| 92 |
+
# name = id2label[index_of_one]
|
| 93 |
+
# else:
|
| 94 |
+
# name = "NA"
|
| 95 |
+
# predictions_names.append(name)
|
| 96 |
|
| 97 |
+
# # Combine the paragraphs and labels to a dataframe
|
| 98 |
+
# df_predictions = pd.DataFrame({'Paragraph': par_list, 'Prediction': predictions_names})
|
| 99 |
|
| 100 |
+
# # Drop all "Other" and "NA" predictions
|
| 101 |
+
# filtered_df = df[df['Prediction'].isin(['Other', 'NA'])]
|
| 102 |
|
| 103 |
|
| 104 |
+
# #####################################
|
| 105 |
+
# st.write(df)
|
| 106 |
|