Spaces:
Sleeping
Sleeping
Update utils/vulnerability_classifier.py
Browse files
utils/vulnerability_classifier.py
CHANGED
|
@@ -9,7 +9,51 @@ import streamlit as st
|
|
| 9 |
from transformers import pipeline
|
| 10 |
from setfit import SetFitModel
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
@st.cache_resource
|
| 14 |
def load_vulnerabilityClassifier(config_file:str = None, classifier_name:str = None):
|
| 15 |
"""
|
|
@@ -89,12 +133,11 @@ def vulnerability_classification(haystack_doc:pd.DataFrame,
|
|
| 89 |
|
| 90 |
predictions = classifier_model(list(haystack_doc.text))
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
|
| 95 |
-
# for i in range(len(predictions)):
|
| 96 |
|
| 97 |
-
|
| 98 |
# placeholder = {}
|
| 99 |
# for j in range(len(temp)):
|
| 100 |
# placeholder[temp[j]['label']] = temp[j]['score']
|
|
|
|
| 9 |
from transformers import pipeline
|
| 10 |
from setfit import SetFitModel
|
| 11 |
|
| 12 |
+
label_dict= {0: 'Agricultural communities',
|
| 13 |
+
1: 'Children',
|
| 14 |
+
2: 'Coastal communities',
|
| 15 |
+
3: 'Ethnic, racial or other minorities',
|
| 16 |
+
4: 'Fishery communities',
|
| 17 |
+
5: 'Informal sector workers',
|
| 18 |
+
6: 'Members of indigenous and local communities',
|
| 19 |
+
7: 'Migrants and displaced persons',
|
| 20 |
+
8: 'Older persons',
|
| 21 |
+
9: 'Other',
|
| 22 |
+
10: 'Persons living in poverty',
|
| 23 |
+
11: 'Persons with disabilities',
|
| 24 |
+
12: 'Persons with pre-existing health conditions',
|
| 25 |
+
13: 'Residents of drought-prone regions',
|
| 26 |
+
14: 'Rural populations',
|
| 27 |
+
15: 'Sexual minorities (LGBTQI+)',
|
| 28 |
+
16: 'Urban populations',
|
| 29 |
+
17: 'Women and other genders'}
|
| 30 |
|
| 31 |
+
def getlabels(preds):
|
| 32 |
+
# Get label names
|
| 33 |
+
preds_list = preds.tolist()
|
| 34 |
+
|
| 35 |
+
predictions_names=[]
|
| 36 |
+
|
| 37 |
+
# loop through each prediction
|
| 38 |
+
for ele in preds_list:
|
| 39 |
+
|
| 40 |
+
# see if there is a value 1 and retrieve index
|
| 41 |
+
try:
|
| 42 |
+
index_of_one = ele.index(1)
|
| 43 |
+
except ValueError:
|
| 44 |
+
index_of_one = "NA"
|
| 45 |
+
|
| 46 |
+
# Retrieve the name of the label (if no prediction made = NA)
|
| 47 |
+
if index_of_one != "NA":
|
| 48 |
+
name = label_dict[index_of_one]
|
| 49 |
+
else:
|
| 50 |
+
name = "NA"
|
| 51 |
+
|
| 52 |
+
# Append name to list
|
| 53 |
+
predictions_names.append(name)
|
| 54 |
+
|
| 55 |
+
return predictions_names
|
| 56 |
+
|
| 57 |
@st.cache_resource
|
| 58 |
def load_vulnerabilityClassifier(config_file:str = None, classifier_name:str = None):
|
| 59 |
"""
|
|
|
|
| 133 |
|
| 134 |
predictions = classifier_model(list(haystack_doc.text))
|
| 135 |
|
| 136 |
+
|
| 137 |
|
| 138 |
+
pred_labels = getlabels(predictions)
|
|
|
|
| 139 |
|
| 140 |
+
haystack_doc['Vulnerability Label'] = pred_labels
|
| 141 |
# placeholder = {}
|
| 142 |
# for j in range(len(temp)):
|
| 143 |
# placeholder[temp[j]['label']] = temp[j]['score']
|