Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,100 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from parler_tts import ParlerTTSForConditionalGeneration
|
| 4 |
-
from transformers import AutoTokenizer
|
| 5 |
import soundfile as sf
|
| 6 |
import uuid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
model_name = "ai4bharat/indic-parler-tts"
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
desc_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def synthesize(language, text, gender, emotion, speed, pitch, quality):
|
| 15 |
-
|
| 16 |
-
f"A native {language} {gender.lower()} speaker with a {emotion.lower()} and expressive tone, "
|
| 17 |
f"speaking at a {speed.lower()} rate with {pitch.lower()} pitch and {quality.lower()} voice quality."
|
| 18 |
)
|
| 19 |
-
desc_inputs = desc_tokenizer(desc, return_tensors="pt").to(device)
|
| 20 |
-
text_inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 21 |
-
|
| 22 |
-
gen_audio = model.generate(
|
| 23 |
-
input_ids=desc_inputs.input_ids,
|
| 24 |
-
attention_mask=desc_inputs.attention_mask,
|
| 25 |
-
prompt_input_ids=text_inputs.input_ids,
|
| 26 |
-
prompt_attention_mask=torch.ones_like(text_inputs.input_ids).to(device)
|
| 27 |
-
)
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
return filename
|
| 33 |
|
|
|
|
| 34 |
iface = gr.Interface(
|
| 35 |
fn=synthesize,
|
| 36 |
inputs=[
|
| 37 |
-
gr.Dropdown(["Malayalam", "
|
| 38 |
-
gr.Textbox(label="Text to Synthesize", lines=
|
| 39 |
gr.Radio(["Male", "Female"], label="Speaker Gender"),
|
| 40 |
gr.Dropdown(["Neutral", "Happy", "Sad", "Angry"], label="Emotion"),
|
| 41 |
gr.Dropdown(["Slow", "Moderate", "Fast"], label="Speaking Rate"),
|
| 42 |
gr.Dropdown(["Low", "Normal", "High"], label="Pitch"),
|
| 43 |
gr.Dropdown(["Basic", "Refined"], label="Voice Quality"),
|
| 44 |
],
|
| 45 |
-
outputs=gr.Audio(type="filepath", label="Synthesized
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
description="Type text, choose a speaker style, and get synthesized speech for Malayalam, Hindi, Tamil, or English."
|
| 49 |
)
|
| 50 |
|
| 51 |
iface.launch()
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
|
|
|
| 2 |
import soundfile as sf
|
| 3 |
import uuid
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import re
|
| 7 |
+
from parler_tts import ParlerTTSForConditionalGeneration
|
| 8 |
+
from transformers import AutoTokenizer
|
| 9 |
|
| 10 |
+
# Load model and tokenizers
|
| 11 |
model_name = "ai4bharat/indic-parler-tts"
|
| 12 |
+
device = "cpu"
|
| 13 |
+
|
| 14 |
+
print("Loading model...")
|
| 15 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(model_name).to(device).eval()
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 17 |
desc_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
|
| 18 |
|
| 19 |
+
print("Applying dynamic quantization...")
|
| 20 |
+
quantized_model = torch.quantization.quantize_dynamic(
|
| 21 |
+
model,
|
| 22 |
+
{torch.nn.Linear},
|
| 23 |
+
dtype=torch.qint8
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Sentence splitter (splits by full stop, exclamation, or question mark)
|
| 27 |
+
def split_text(text, max_len=150):
|
| 28 |
+
# First, try to split by sentence punctuation
|
| 29 |
+
chunks = re.split(r'(?<=[.!?]) +', text)
|
| 30 |
+
|
| 31 |
+
# If any chunk is still too long, split further
|
| 32 |
+
refined_chunks = []
|
| 33 |
+
for chunk in chunks:
|
| 34 |
+
if len(chunk) <= max_len:
|
| 35 |
+
refined_chunks.append(chunk)
|
| 36 |
+
else:
|
| 37 |
+
# Break on space while respecting max_len
|
| 38 |
+
words = chunk.split()
|
| 39 |
+
buffer = []
|
| 40 |
+
length = 0
|
| 41 |
+
for word in words:
|
| 42 |
+
buffer.append(word)
|
| 43 |
+
length += len(word) + 1
|
| 44 |
+
if length > max_len:
|
| 45 |
+
refined_chunks.append(' '.join(buffer))
|
| 46 |
+
buffer = []
|
| 47 |
+
length = 0
|
| 48 |
+
if buffer:
|
| 49 |
+
refined_chunks.append(' '.join(buffer))
|
| 50 |
+
return refined_chunks
|
| 51 |
+
|
| 52 |
+
# Main synthesis function
|
| 53 |
def synthesize(language, text, gender, emotion, speed, pitch, quality):
|
| 54 |
+
description = (
|
| 55 |
+
f"A native {language.lower()} {gender.lower()} speaker with a {emotion.lower()} and expressive tone, "
|
| 56 |
f"speaking at a {speed.lower()} rate with {pitch.lower()} pitch and {quality.lower()} voice quality."
|
| 57 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
description_input = desc_tokenizer(description, return_tensors="pt").to(device)
|
| 60 |
+
|
| 61 |
+
chunks = split_text(text)
|
| 62 |
+
audio_pieces = []
|
| 63 |
+
|
| 64 |
+
for chunk in chunks:
|
| 65 |
+
prompt_input = tokenizer(chunk, return_tensors="pt").to(device)
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
generation = quantized_model.generate(
|
| 68 |
+
input_ids=description_input.input_ids,
|
| 69 |
+
attention_mask=description_input.attention_mask,
|
| 70 |
+
prompt_input_ids=prompt_input.input_ids,
|
| 71 |
+
prompt_attention_mask=torch.ones_like(prompt_input.input_ids).to(device)
|
| 72 |
+
)
|
| 73 |
+
audio_chunk = generation.cpu().numpy().squeeze()
|
| 74 |
+
audio_pieces.append(audio_chunk)
|
| 75 |
+
|
| 76 |
+
# Concatenate all audio chunks
|
| 77 |
+
final_audio = np.concatenate(audio_pieces)
|
| 78 |
+
|
| 79 |
+
filename = f"{uuid.uuid4().hex}.wav"
|
| 80 |
+
sf.write(filename, final_audio, quantized_model.config.sampling_rate)
|
| 81 |
return filename
|
| 82 |
|
| 83 |
+
# Gradio Interface
|
| 84 |
iface = gr.Interface(
|
| 85 |
fn=synthesize,
|
| 86 |
inputs=[
|
| 87 |
+
gr.Dropdown(["Malayalam", "Hindi", "Tamil", "English"], label="Language"),
|
| 88 |
+
gr.Textbox(label="Text to Synthesize", lines=6, placeholder="Enter your sentence here..."),
|
| 89 |
gr.Radio(["Male", "Female"], label="Speaker Gender"),
|
| 90 |
gr.Dropdown(["Neutral", "Happy", "Sad", "Angry"], label="Emotion"),
|
| 91 |
gr.Dropdown(["Slow", "Moderate", "Fast"], label="Speaking Rate"),
|
| 92 |
gr.Dropdown(["Low", "Normal", "High"], label="Pitch"),
|
| 93 |
gr.Dropdown(["Basic", "Refined"], label="Voice Quality"),
|
| 94 |
],
|
| 95 |
+
outputs=gr.Audio(type="filepath", label="Synthesized Speech"),
|
| 96 |
+
title="Multilingual Indic TTS (Quantized + Chunked)",
|
| 97 |
+
description="Fast CPU-based TTS with quantized Parler-TTS and text chunking for Malayalam, Hindi, Tamil, and English.",
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
iface.launch()
|