Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import torch
|
|
| 3 |
from transformers import VitsModel, AutoTokenizer
|
| 4 |
import soundfile as sf
|
| 5 |
import tempfile
|
|
|
|
| 6 |
|
| 7 |
LANG_MODEL_MAP = {
|
| 8 |
"English": "facebook/mms-tts-eng",
|
|
@@ -12,7 +13,7 @@ LANG_MODEL_MAP = {
|
|
| 12 |
"Kannada": "facebook/mms-tts-kan"
|
| 13 |
}
|
| 14 |
|
| 15 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
cache = {}
|
| 17 |
|
| 18 |
def load_model_and_tokenizer(language):
|
|
@@ -24,26 +25,36 @@ def load_model_and_tokenizer(language):
|
|
| 24 |
return cache[model_name]
|
| 25 |
|
| 26 |
def tts(language, text):
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
iface = gr.Interface(
|
| 39 |
fn=tts,
|
| 40 |
inputs=[
|
| 41 |
-
gr.Dropdown(choices=list(LANG_MODEL_MAP.keys()),
|
| 42 |
-
gr.Textbox(label="Enter Text"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
],
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
description="Generate speech in English, Hindi, Tamil, Malayalam, or Kannada using Meta's MMS TTS models."
|
| 47 |
)
|
| 48 |
|
| 49 |
if __name__ == "__main__":
|
|
|
|
| 3 |
from transformers import VitsModel, AutoTokenizer
|
| 4 |
import soundfile as sf
|
| 5 |
import tempfile
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
LANG_MODEL_MAP = {
|
| 9 |
"English": "facebook/mms-tts-eng",
|
|
|
|
| 13 |
"Kannada": "facebook/mms-tts-kan"
|
| 14 |
}
|
| 15 |
|
| 16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
cache = {}
|
| 18 |
|
| 19 |
def load_model_and_tokenizer(language):
|
|
|
|
| 25 |
return cache[model_name]
|
| 26 |
|
| 27 |
def tts(language, text):
|
| 28 |
+
try:
|
| 29 |
+
if not text.strip():
|
| 30 |
+
return "Please enter some text.", None
|
| 31 |
|
| 32 |
+
tokenizer, model = load_model_and_tokenizer(language)
|
| 33 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 34 |
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
output = model(**inputs)
|
| 37 |
+
|
| 38 |
+
# Save to temporary WAV file
|
| 39 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 40 |
+
sf.write(f.name, output.waveform.cpu().numpy(), samplerate=16000)
|
| 41 |
+
return "Here is your audio output", f.name
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
return f"Error: {str(e)}", None
|
| 45 |
|
| 46 |
iface = gr.Interface(
|
| 47 |
fn=tts,
|
| 48 |
inputs=[
|
| 49 |
+
gr.Dropdown(label="Select Language", choices=list(LANG_MODEL_MAP.keys()), value="English"),
|
| 50 |
+
gr.Textbox(label="Enter Text")
|
| 51 |
+
],
|
| 52 |
+
outputs=[
|
| 53 |
+
gr.Textbox(label="Status"),
|
| 54 |
+
gr.Audio(label="Synthesized Speech", type="filepath")
|
| 55 |
],
|
| 56 |
+
title="Multilingual TTS with Meta MMS",
|
| 57 |
+
description="Generate speech from text using Meta's MMS models for English, Hindi, Tamil, Malayalam, and Kannada."
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
if __name__ == "__main__":
|