Spaces:
Runtime error
Runtime error
Delete models/denoiser/nextdit/layers.py with huggingface_hub
Browse files
models/denoiser/nextdit/layers.py
DELETED
|
@@ -1,132 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
import numpy as np
|
| 5 |
-
from typing import Callable, Optional
|
| 6 |
-
|
| 7 |
-
import warnings
|
| 8 |
-
|
| 9 |
-
import torch
|
| 10 |
-
import torch.nn as nn
|
| 11 |
-
|
| 12 |
-
try:
|
| 13 |
-
from apex.normalization import FusedRMSNorm as RMSNorm
|
| 14 |
-
except ImportError:
|
| 15 |
-
warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class RMSNorm(torch.nn.Module):
|
| 19 |
-
def __init__(self, dim: int, eps: float = 1e-6):
|
| 20 |
-
"""
|
| 21 |
-
Initialize the RMSNorm normalization layer.
|
| 22 |
-
Args:
|
| 23 |
-
dim (int): The dimension of the input tensor.
|
| 24 |
-
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
| 25 |
-
Attributes:
|
| 26 |
-
eps (float): A small value added to the denominator for numerical stability.
|
| 27 |
-
weight (nn.Parameter): Learnable scaling parameter.
|
| 28 |
-
"""
|
| 29 |
-
super().__init__()
|
| 30 |
-
self.eps = eps
|
| 31 |
-
self.weight = nn.Parameter(torch.ones(dim))
|
| 32 |
-
|
| 33 |
-
def _norm(self, x):
|
| 34 |
-
"""
|
| 35 |
-
Apply the RMSNorm normalization to the input tensor.
|
| 36 |
-
Args:
|
| 37 |
-
x (torch.Tensor): The input tensor.
|
| 38 |
-
Returns:
|
| 39 |
-
torch.Tensor: The normalized tensor.
|
| 40 |
-
"""
|
| 41 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 42 |
-
|
| 43 |
-
def forward(self, x):
|
| 44 |
-
"""
|
| 45 |
-
Forward pass through the RMSNorm layer.
|
| 46 |
-
Args:
|
| 47 |
-
x (torch.Tensor): The input tensor.
|
| 48 |
-
Returns:
|
| 49 |
-
torch.Tensor: The output tensor after applying RMSNorm.
|
| 50 |
-
"""
|
| 51 |
-
output = self._norm(x.float()).type_as(x)
|
| 52 |
-
return output * self.weight
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def modulate(x, scale):
|
| 56 |
-
return x * (1 + scale.unsqueeze(1))
|
| 57 |
-
|
| 58 |
-
class LLamaFeedForward(nn.Module):
|
| 59 |
-
"""
|
| 60 |
-
Corresponds to the FeedForward layer in Next DiT.
|
| 61 |
-
"""
|
| 62 |
-
def __init__(
|
| 63 |
-
self,
|
| 64 |
-
dim: int,
|
| 65 |
-
hidden_dim: int,
|
| 66 |
-
multiple_of: int,
|
| 67 |
-
ffn_dim_multiplier: Optional[float] = None,
|
| 68 |
-
zeros_initialize: bool = True,
|
| 69 |
-
dtype: torch.dtype = torch.float32,
|
| 70 |
-
):
|
| 71 |
-
super().__init__()
|
| 72 |
-
self.dim = dim
|
| 73 |
-
self.hidden_dim = hidden_dim
|
| 74 |
-
self.multiple_of = multiple_of
|
| 75 |
-
self.ffn_dim_multiplier = ffn_dim_multiplier
|
| 76 |
-
self.zeros_initialize = zeros_initialize
|
| 77 |
-
self.dtype = dtype
|
| 78 |
-
|
| 79 |
-
# Compute hidden_dim based on the given formula
|
| 80 |
-
hidden_dim_calculated = int(2 * self.hidden_dim / 3)
|
| 81 |
-
if self.ffn_dim_multiplier is not None:
|
| 82 |
-
hidden_dim_calculated = int(self.ffn_dim_multiplier * hidden_dim_calculated)
|
| 83 |
-
hidden_dim_calculated = self.multiple_of * ((hidden_dim_calculated + self.multiple_of - 1) // self.multiple_of)
|
| 84 |
-
|
| 85 |
-
# Define linear layers
|
| 86 |
-
self.w1 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
|
| 87 |
-
self.w2 = nn.Linear(hidden_dim_calculated, self.dim, bias=False)
|
| 88 |
-
self.w3 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
|
| 89 |
-
|
| 90 |
-
# Initialize weights
|
| 91 |
-
if self.zeros_initialize:
|
| 92 |
-
nn.init.zeros_(self.w2.weight)
|
| 93 |
-
else:
|
| 94 |
-
nn.init.xavier_uniform_(self.w2.weight)
|
| 95 |
-
nn.init.xavier_uniform_(self.w1.weight)
|
| 96 |
-
nn.init.xavier_uniform_(self.w3.weight)
|
| 97 |
-
|
| 98 |
-
def _forward_silu_gating(self, x1, x3):
|
| 99 |
-
return F.silu(x1) * x3
|
| 100 |
-
|
| 101 |
-
def forward(self, x):
|
| 102 |
-
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
|
| 103 |
-
|
| 104 |
-
class FinalLayer(nn.Module):
|
| 105 |
-
"""
|
| 106 |
-
The final layer of Next-DiT.
|
| 107 |
-
"""
|
| 108 |
-
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
| 109 |
-
super().__init__()
|
| 110 |
-
self.hidden_size = hidden_size
|
| 111 |
-
self.patch_size = patch_size
|
| 112 |
-
self.out_channels = out_channels
|
| 113 |
-
|
| 114 |
-
# LayerNorm without learnable parameters (elementwise_affine=False)
|
| 115 |
-
self.norm_final = nn.LayerNorm(self.hidden_size, eps=1e-6, elementwise_affine=False)
|
| 116 |
-
self.linear = nn.Linear(self.hidden_size, np.prod(self.patch_size) * self.out_channels, bias=True)
|
| 117 |
-
nn.init.zeros_(self.linear.weight)
|
| 118 |
-
nn.init.zeros_(self.linear.bias)
|
| 119 |
-
|
| 120 |
-
self.adaLN_modulation = nn.Sequential(
|
| 121 |
-
nn.SiLU(),
|
| 122 |
-
nn.Linear(self.hidden_size, self.hidden_size),
|
| 123 |
-
)
|
| 124 |
-
# Initialize the last layer with zeros
|
| 125 |
-
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
| 126 |
-
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
| 127 |
-
|
| 128 |
-
def forward(self, x, c):
|
| 129 |
-
scale = self.adaLN_modulation(c)
|
| 130 |
-
x = modulate(self.norm_final(x), scale)
|
| 131 |
-
x = self.linear(x)
|
| 132 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|