Spaces:
Runtime error
Runtime error
| import os | |
| from typing import List | |
| try: | |
| from resemble_enhance.enhancer.enhancer import Enhancer | |
| from resemble_enhance.enhancer.hparams import HParams | |
| from resemble_enhance.inference import inference | |
| except: | |
| pass | |
| import torch | |
| from modules.utils.constants import MODELS_DIR | |
| from pathlib import Path | |
| from threading import Lock | |
| resemble_enhance = None | |
| lock = Lock() | |
| def load_enhancer(device: torch.device): | |
| global resemble_enhance | |
| with lock: | |
| if resemble_enhance is None: | |
| resemble_enhance = ResembleEnhance(device) | |
| resemble_enhance.load_model() | |
| return resemble_enhance | |
| class ResembleEnhance: | |
| hparams: HParams | |
| enhancer: Enhancer | |
| def __init__(self, device: torch.device): | |
| self.device = device | |
| self.enhancer = None | |
| self.hparams = None | |
| def load_model(self): | |
| hparams = HParams.load(Path(MODELS_DIR) / "resemble-enhance") | |
| enhancer = Enhancer(hparams) | |
| state_dict = torch.load( | |
| Path(MODELS_DIR) / "resemble-enhance" / "mp_rank_00_model_states.pt", | |
| map_location="cpu", | |
| )["module"] | |
| enhancer.load_state_dict(state_dict) | |
| enhancer.eval() | |
| enhancer.to(self.device) | |
| enhancer.denoiser.to(self.device) | |
| self.hparams = hparams | |
| self.enhancer = enhancer | |
| def denoise(self, dwav, sr, device) -> tuple[torch.Tensor, int]: | |
| assert self.enhancer is not None, "Model not loaded" | |
| assert self.enhancer.denoiser is not None, "Denoiser not loaded" | |
| enhancer = self.enhancer | |
| return inference(model=enhancer.denoiser, dwav=dwav, sr=sr, device=device) | |
| def enhance( | |
| self, | |
| dwav, | |
| sr, | |
| device, | |
| nfe=32, | |
| solver="midpoint", | |
| lambd=0.5, | |
| tau=0.5, | |
| ) -> tuple[torch.Tensor, int]: | |
| assert 0 < nfe <= 128, f"nfe must be in (0, 128], got {nfe}" | |
| assert solver in ( | |
| "midpoint", | |
| "rk4", | |
| "euler", | |
| ), f"solver must be in ('midpoint', 'rk4', 'euler'), got {solver}" | |
| assert 0 <= lambd <= 1, f"lambd must be in [0, 1], got {lambd}" | |
| assert 0 <= tau <= 1, f"tau must be in [0, 1], got {tau}" | |
| assert self.enhancer is not None, "Model not loaded" | |
| enhancer = self.enhancer | |
| enhancer.configurate_(nfe=nfe, solver=solver, lambd=lambd, tau=tau) | |
| return inference(model=enhancer, dwav=dwav, sr=sr, device=device) | |
| if __name__ == "__main__": | |
| import torchaudio | |
| from modules.models import load_chat_tts | |
| load_chat_tts() | |
| device = torch.device("cuda") | |
| ench = ResembleEnhance(device) | |
| ench.load_model() | |
| wav, sr = torchaudio.load("test.wav") | |
| print(wav.shape, type(wav), sr, type(sr)) | |
| exit() | |
| wav = wav.squeeze(0).cuda() | |
| print(wav.device) | |
| denoised, d_sr = ench.denoise(wav.cpu(), sr, device) | |
| denoised = denoised.unsqueeze(0) | |
| print(denoised.shape) | |
| torchaudio.save("denoised.wav", denoised, d_sr) | |
| for solver in ("midpoint", "rk4", "euler"): | |
| for lambd in (0.1, 0.5, 0.9): | |
| for tau in (0.1, 0.5, 0.9): | |
| enhanced, e_sr = ench.enhance( | |
| wav.cpu(), sr, device, solver=solver, lambd=lambd, tau=tau, nfe=128 | |
| ) | |
| enhanced = enhanced.unsqueeze(0) | |
| print(enhanced.shape) | |
| torchaudio.save(f"enhanced_{solver}_{lambd}_{tau}.wav", enhanced, e_sr) | |