Spaces:
Runtime error
Runtime error
| import functools | |
| import torch | |
| import transformers | |
| import peft | |
| from transformers.trainer_pt_utils import LabelSmoother | |
| from utils.dataset import AudioCollator | |
| from utils.logger import MetricLogger | |
| from utils.output import ansi, get_ansi_len, output_iter | |
| IGNORE_TOKEN_ID = LabelSmoother.ignore_index | |
| def train_gpt_lora( | |
| chat, | |
| dataset, | |
| decoder_encoder, | |
| dvae_encoder, | |
| batch_size=16, | |
| epochs=10, | |
| train_text=True, | |
| speaker_embeds=None, | |
| lora_r=8, | |
| lora_alpha=16, | |
| ): | |
| if speaker_embeds is None: | |
| speaker_embeds = {} | |
| tokenizer = chat.pretrain_models["tokenizer"] | |
| decoder_decoder = chat.pretrain_models["decoder"] | |
| decoder_decoder.eval().requires_grad_(False) | |
| decoder_encoder.to(device=dataset.device).eval().requires_grad_(False) | |
| dvae_decoder = chat.pretrain_models["dvae"] | |
| dvae_decoder.eval().requires_grad_(False) | |
| dvae_encoder.to(device=dataset.device).eval().requires_grad_(False) | |
| gpt = chat.pretrain_models["gpt"] | |
| gpt.train().requires_grad_() | |
| # Add LoRA to GPT model | |
| lora_config = peft.LoraConfig(r=lora_r, lora_alpha=lora_alpha) | |
| gpt.gpt = peft.get_peft_model(gpt.gpt, lora_config) | |
| speaker_embeds = { | |
| speaker: torch.randn(768, device=dataset.device, requires_grad=True) | |
| for speaker in dataset.speakers | |
| } | speaker_embeds | |
| for speaker_embed in speaker_embeds.values(): | |
| std, mean = chat.pretrain_models["spk_stat"].chunk(2) | |
| speaker_embed.data = speaker_embed.data * std + mean | |
| SPEAKER_TOKEN_ID = tokenizer.convert_tokens_to_ids("[spk_emb]") | |
| AUDIO_EOS_TOKEN_ID = 0 | |
| AUDIO_PAD_TOKEN_ID = AUDIO_EOS_TOKEN_ID | |
| train_params = list(gpt.parameters()) + list(speaker_embeds.values()) | |
| optimizer = torch.optim.Adam( | |
| gpt.parameters(), lr=1e-3, weight_decay=0, betas=[0.9, 0.95], eps=1e-5 | |
| ) | |
| optimizer.add_param_group({"params": speaker_embeds.values(), "lr": 1e-1}) | |
| loss_fn = torch.nn.CrossEntropyLoss() | |
| lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs, 1e-7) | |
| loader = torch.utils.data.DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| shuffle=True, | |
| collate_fn=AudioCollator(text_pad=tokenizer.pad_token_id), | |
| ) | |
| logger = MetricLogger() | |
| logger.create_meters(loss=None, mse_loss=None, audio_loss=None, text_loss=None) | |
| for _epoch in range(epochs): | |
| _epoch += 1 | |
| logger.reset() | |
| header = "{blue_light}{0}: {1}{reset}".format( | |
| "Epoch", output_iter(_epoch, epochs), **ansi | |
| ) | |
| header = header.ljust(max(len("Epoch"), 30) + get_ansi_len(header)) | |
| iterator = logger.log_every(loader, header=header, tqdm_header="Batch") | |
| for batch in iterator: | |
| speakers = batch["speaker"] | |
| text_input_ids = batch["text_input_ids"] | |
| text_attention_mask = batch["text_attention_mask"] | |
| audio_mel_specs = batch["audio_mel_specs"] | |
| audio_attention_mask = batch["audio_attention_mask"] | |
| batch_size, text_len = text_attention_mask.size() | |
| dvae_audio_latents = dvae_encoder(audio_mel_specs, audio_attention_mask) | |
| _, dvae_audio_input_ids = quantize( | |
| dvae_decoder.vq_layer.quantizer, dvae_audio_latents | |
| ) | |
| dvae_audio_input_ids[~audio_attention_mask.bool()] = AUDIO_PAD_TOKEN_ID | |
| extended_audio_attention_mask = torch.cat( | |
| [ | |
| audio_attention_mask, | |
| torch.zeros( | |
| (batch_size, 1), | |
| dtype=audio_attention_mask.dtype, | |
| device=audio_attention_mask.device, | |
| ), | |
| ], | |
| dim=1, | |
| ) | |
| extended_audio_input_ids = torch.cat( | |
| [ | |
| dvae_audio_input_ids, | |
| AUDIO_PAD_TOKEN_ID | |
| * torch.ones( | |
| (batch_size, 1, gpt.num_vq), | |
| dtype=dvae_audio_input_ids.dtype, | |
| device=dvae_audio_input_ids.device, | |
| ), | |
| ], | |
| dim=1, | |
| ) | |
| indices = audio_attention_mask.int().sum(dim=1) | |
| for i in range(batch_size): | |
| extended_audio_attention_mask[i, indices[i]] = 1 | |
| extended_audio_input_ids[i, indices[i]] = AUDIO_EOS_TOKEN_ID | |
| input_ids = torch.cat( | |
| [ | |
| text_input_ids.unsqueeze(-1).repeat(1, 1, gpt.num_vq), | |
| extended_audio_input_ids, | |
| ], | |
| dim=1, | |
| ) | |
| attention_mask = torch.cat( | |
| [text_attention_mask, extended_audio_attention_mask], dim=1 | |
| ) | |
| text_mask = torch.cat( | |
| [ | |
| torch.ones_like(text_attention_mask, dtype=bool), | |
| torch.zeros_like(extended_audio_attention_mask, dtype=bool), | |
| ], | |
| dim=1, | |
| ) | |
| labels = input_ids.clone() | |
| labels[~attention_mask.bool()] = IGNORE_TOKEN_ID | |
| inputs_embeds = gpt.get_emb(input_ids=input_ids, text_mask=text_mask) | |
| indices = torch.all(input_ids == SPEAKER_TOKEN_ID, dim=-1) | |
| for i, speaker in enumerate(speakers): | |
| inputs_embeds[i, indices[i]] = torch.nn.functional.normalize( | |
| speaker_embeds[speaker].to(dtype=inputs_embeds.dtype), | |
| p=2.0, | |
| dim=-1, | |
| eps=1e-12, | |
| ).unsqueeze(0) | |
| outputs = gpt.gpt.forward( | |
| inputs_embeds=inputs_embeds, attention_mask=attention_mask | |
| ) | |
| hidden_states = outputs.last_hidden_state | |
| text_hidden_states = hidden_states[:, : text_len - 1] | |
| audio_hidden_states = hidden_states[:, text_len - 1 : -1] | |
| audio_logits = torch.stack( | |
| [gpt.head_code[i](audio_hidden_states) for i in range(gpt.num_vq)], | |
| dim=2, | |
| ) | |
| audio_loss = loss_fn( | |
| audio_logits.flatten(0, 2), labels[:, text_len:].flatten(0, 2) | |
| ) | |
| loss = audio_loss | |
| if train_text: | |
| text_logits = gpt.head_text(text_hidden_states) | |
| text_loss = loss_fn( | |
| text_logits.flatten(0, 1), labels[:, 1:text_len, 0].flatten(0, 1) | |
| ) | |
| loss += text_loss | |
| logger.meters["text_loss"].update(text_loss.item(), n=batch_size) | |
| gpt_gen_mel_specs = decoder_decoder( | |
| audio_hidden_states[:, :-1].transpose(1, 2) | |
| ).transpose(1, 2) | |
| mse_loss = torch.nn.functional.mse_loss(gpt_gen_mel_specs, audio_mel_specs) | |
| loss += 0.01 * mse_loss | |
| optimizer.zero_grad() | |
| loss.backward() | |
| torch.nn.utils.clip_grad_norm_(train_params, 1.0) | |
| optimizer.step() | |
| logger.meters["loss"].update(loss.item(), n=batch_size) | |
| logger.meters["mse_loss"].update(mse_loss.item(), n=batch_size) | |
| logger.meters["audio_loss"].update(audio_loss.item(), n=batch_size) | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| return speaker_embeds | |
| # Example usage | |
| def main(): | |
| # Load necessary models and data paths | |
| chat = ChatTTS.Chat() | |
| chat.load_models() | |
| dataset = XzListTar( | |
| root="data/all.list", | |
| tokenizer=chat.pretrain_models["tokenizer"], | |
| vocos_model=chat.pretrain_models["vocos"], | |
| tar_path="data/Xz.tar", | |
| tar_in_memory=True, | |
| process_ahead=True, | |
| ) | |
| decoder_encoder = DVAEEncoder( | |
| **get_encoder_config(chat.pretrain_models["decoder"].decoder) | |
| ) | |
| dvae_encoder = DVAEEncoder( | |
| **get_encoder_config(chat.pretrain_models["dvae"].decoder) | |
| ) | |
| # Train GPT with LoRA | |
| speaker_embeds = train_gpt_lora( | |
| chat=chat, | |
| dataset=dataset, | |
| decoder_encoder=decoder_encoder, | |
| dvae_encoder=dvae_encoder, | |
| batch_size=32, | |
| epochs=10, | |
| train_text=True, | |
| lora_r=8, | |
| lora_alpha=16, | |
| ) | |
| # Save LoRA parameters and embeddings | |
| lora_save_path = "./saved_models/gpt_lora.pth" | |
| peft.save_pretrained(gpt.gpt, lora_save_path) | |
| np.savez( | |
| "./saved_models/speaker_embeds.npz", | |
| **{k: v.cpu().numpy() for k, v in speaker_embeds.items()} | |
| ) | |
| if __name__ == "__main__": | |
| main() | |