# -*- coding: utf-8 -*- # @Organization : insightface.ai # @Author : Jia Guo # @Time : 2021-05-04 # @Function : from __future__ import division import onnxruntime __all__ = ['FaceAnalysis'] from utils.common import Face from models.arcface_onnx import ArcFaceONNX from models.attribute import Attribute from models.landmark import Landmark from models.retinaface import RetinaFace from huggingface_hub import hf_hub_download REPO_ID = "leonelhs/insightface" model_detector_path = hf_hub_download(repo_id=REPO_ID, filename="det_10g.onnx") model_landmark_3d_68_path = hf_hub_download(repo_id=REPO_ID, filename="1k3d68.onnx") model_landmark_2d_106_path = hf_hub_download(repo_id=REPO_ID, filename="2d106det.onnx") model_genderage_path = hf_hub_download(repo_id=REPO_ID, filename="genderage.onnx") model_recognition_path = hf_hub_download(repo_id=REPO_ID, filename="w600k_r50.onnx") class FaceAnalysis: def __init__(self): onnxruntime.set_default_logger_severity(3) self.detector = RetinaFace(model_file=model_detector_path, input_size=(640, 640), det_thresh=0.5) self.landmark_3d_68 = Landmark(model_file=model_landmark_3d_68_path) self.landmark_2d_106 = Landmark(model_file=model_landmark_2d_106_path) self.genderage = Attribute(model_file=model_genderage_path) self.recognition = ArcFaceONNX(model_file=model_recognition_path) def get(self, img, max_num=0): bboxes, kpss = self.detector.detect(img, max_num=max_num, metric='default') if bboxes.shape[0] == 0: return [] ret = [] for i in range(bboxes.shape[0]): bbox = bboxes[i, 0:4] det_score = bboxes[i, 4] kps = None if kpss is not None: kps = kpss[i] face = Face(bbox=bbox, kps=kps, det_score=det_score) self.landmark_3d_68.get(img, face) self.landmark_2d_106.get(img, face) self.genderage.get(img, face) self.recognition.get(img, face) ret.append(face) return ret