Spaces:
Sleeping
Sleeping
make more gradionic
Browse files- README.md +19 -3
- app.py +72 -62
- segformer-b5-finetuned-ade-640-640.onnx +0 -3
README.md
CHANGED
|
@@ -1,17 +1,33 @@
|
|
| 1 |
---
|
| 2 |
-
title: SegFormer (ADE20k) in
|
| 3 |
emoji: 🏃
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 11 |
---
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
This space hosts the [SegFormer model](https://arxiv.org/abs/2105.15203) in TensorFlow. This model was fine-tuned on the [ADE20k dataset](http://groups.csail.mit.edu/vision/datasets/ADE20K/). To know more about the checkpoint used in this space, refer to the model card
|
| 14 |
[here](https://huggingface.co/nvidia/segformer-b5-finetuned-ade-640-640).
|
| 15 |
|
| 16 |
Please note that since the model was fine-tuned on the ADE20k dataset, the model is expected to provide best results for images
|
| 17 |
-
belonging to scene categories. For an overview of the dataset, refer to its [homepage](http://groups.csail.mit.edu/vision/datasets/ADE20K/).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: SegFormer (ADE20k) in ONNX
|
| 3 |
emoji: 🏃
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
+
short_description: Image segmentation fine-tuned on the ADE20k dataset
|
| 12 |
---
|
| 13 |
|
| 14 |
+
## SegFormer (ADE20k) in ONNX
|
| 15 |
+
|
| 16 |
+
This is demo TensorFlow SegFormer from 🤗 `transformers` official package. The pre-trained model was trained to segment scene specific images. We are **currently using ONNX model converted from the TensorFlow based SegFormer to improve the latency**. The average latency of an inference is **21** and **8** seconds for TensorFlow and ONNX converted models respectively (in [Colab](https://github.com/deep-diver/segformer-tf-transformers/blob/main/notebooks/TFSegFormer_ONNX.ipynb)). Check out the [repository](https://github.com/deep-diver/segformer-tf-transformers) to find out how to make inference, finetune the model with custom dataset, and further information.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
This space hosts the [SegFormer model](https://arxiv.org/abs/2105.15203) in TensorFlow. This model was fine-tuned on the [ADE20k dataset](http://groups.csail.mit.edu/vision/datasets/ADE20K/). To know more about the checkpoint used in this space, refer to the model card
|
| 20 |
[here](https://huggingface.co/nvidia/segformer-b5-finetuned-ade-640-640).
|
| 21 |
|
| 22 |
Please note that since the model was fine-tuned on the ADE20k dataset, the model is expected to provide best results for images
|
| 23 |
+
belonging to scene categories. For an overview of the dataset, refer to its [homepage](http://groups.csail.mit.edu/vision/datasets/ADE20K/).
|
| 24 |
+
|
| 25 |
+
## Acknowledgments
|
| 26 |
+
This work integrates code and concepts from several repositories.
|
| 27 |
+
For proper attribution, please refer to the following sources (or notify us if any are missing):
|
| 28 |
+
- [Original space](https://huggingface.co/spaces/chansung/segformer-tf-transformers)
|
| 29 |
+
-
|
| 30 |
+
## Contact
|
| 31 |
+
For questions, comments, or feedback, please contact:
|
| 32 |
+
📧 **leonelhs@gmail.com**
|
| 33 |
+
|
app.py
CHANGED
|
@@ -1,13 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import csv
|
| 2 |
import os
|
| 3 |
import sys
|
|
|
|
| 4 |
|
| 5 |
import cv2
|
| 6 |
-
import gradio as gr
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
import numpy as np
|
| 9 |
import onnxruntime as ort
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
ade_palette = []
|
| 13 |
labels_list = []
|
|
@@ -23,14 +56,16 @@ with open(r"ade_palette.txt", "r") as fp:
|
|
| 23 |
tmp_list = list(map(int, line[:-1].strip("][").split(", ")))
|
| 24 |
ade_palette.append(tmp_list)
|
| 25 |
|
| 26 |
-
colormap = np.asarray(ade_palette)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
model_filename = "segformer-b5-finetuned-ade-640-640.onnx"
|
| 29 |
sess_options = ort.SessionOptions()
|
| 30 |
sess_options.intra_op_num_threads = os.cpu_count()
|
| 31 |
-
sess = ort.InferenceSession(
|
| 32 |
-
model_filename, sess_options, providers=["CPUExecutionProvider"]
|
| 33 |
-
)
|
| 34 |
|
| 35 |
|
| 36 |
def label_to_color_image(label):
|
|
@@ -42,31 +77,8 @@ def label_to_color_image(label):
|
|
| 42 |
|
| 43 |
return colormap[label]
|
| 44 |
|
|
|
|
| 45 |
|
| 46 |
-
def draw_plot(pred_img, seg):
|
| 47 |
-
fig = plt.figure(figsize=(20, 15))
|
| 48 |
-
|
| 49 |
-
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
| 50 |
-
|
| 51 |
-
plt.subplot(grid_spec[0])
|
| 52 |
-
plt.imshow(pred_img)
|
| 53 |
-
plt.axis("off")
|
| 54 |
-
|
| 55 |
-
LABEL_NAMES = np.asarray(labels_list)
|
| 56 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
| 57 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
| 58 |
-
|
| 59 |
-
unique_labels = np.unique(seg)
|
| 60 |
-
ax = plt.subplot(grid_spec[1])
|
| 61 |
-
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
| 62 |
-
ax.yaxis.tick_right()
|
| 63 |
-
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
| 64 |
-
plt.xticks([], [])
|
| 65 |
-
ax.tick_params(width=0.0, labelsize=25)
|
| 66 |
-
return fig
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def sepia(input_img):
|
| 70 |
img = cv2.imread(input_img)
|
| 71 |
img = cv2.resize(img, (640, 640)).astype(np.float32)
|
| 72 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
@@ -76,42 +88,40 @@ def sepia(input_img):
|
|
| 76 |
logits = sess.run(None, {"pixel_values": img_batch})[0]
|
| 77 |
|
| 78 |
logits = np.transpose(logits, (0, 2, 3, 1))
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
color_seg = np.zeros(
|
| 83 |
-
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
| 84 |
-
) # height, width, 3
|
| 85 |
-
|
| 86 |
-
for label, color in enumerate(colormap):
|
| 87 |
-
color_seg[seg == label, :] = color
|
| 88 |
|
| 89 |
-
# Convert to BGR
|
| 90 |
-
color_seg = color_seg[..., ::-1]
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
|
|
|
| 99 |
|
| 100 |
-
title
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
|
| 104 |
|
| 105 |
-
"""
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
examples=["ADE_val_00000001.jpeg"],
|
| 112 |
-
allow_flagging="never",
|
| 113 |
-
title=title,
|
| 114 |
-
description=description,
|
| 115 |
-
)
|
| 116 |
|
| 117 |
-
|
|
|
|
|
|
| 1 |
+
#######################################################################################
|
| 2 |
+
#
|
| 3 |
+
# MIT License
|
| 4 |
+
#
|
| 5 |
+
# Copyright (c) [2025] [leonelhs@gmail.com]
|
| 6 |
+
#
|
| 7 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 8 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 9 |
+
# in the Software without restriction, including without limitation the rights
|
| 10 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 11 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 12 |
+
# furnished to do so, subject to the following conditions:
|
| 13 |
+
#
|
| 14 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 15 |
+
# copies or substantial portions of the Software.
|
| 16 |
+
#
|
| 17 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 18 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 19 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 20 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 21 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 22 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 23 |
+
# SOFTWARE.
|
| 24 |
+
#
|
| 25 |
+
#######################################################################################
|
| 26 |
+
#
|
| 27 |
+
# This project is one of several repositories exploring image segmentation techniques.
|
| 28 |
+
# All related projects and interactive demos can be found at:
|
| 29 |
+
# https://huggingface.co/spaces/leonelhs/removators
|
| 30 |
+
# huggingface: https://huggingface.co/spaces/leonelhs/segformer-tf-transformers
|
| 31 |
+
#
|
| 32 |
+
|
| 33 |
import csv
|
| 34 |
import os
|
| 35 |
import sys
|
| 36 |
+
from itertools import islice
|
| 37 |
|
| 38 |
import cv2
|
|
|
|
|
|
|
| 39 |
import numpy as np
|
| 40 |
import onnxruntime as ort
|
| 41 |
+
import gradio as gr
|
| 42 |
+
from PIL import Image
|
| 43 |
+
from huggingface_hub import hf_hub_download
|
| 44 |
|
| 45 |
ade_palette = []
|
| 46 |
labels_list = []
|
|
|
|
| 56 |
tmp_list = list(map(int, line[:-1].strip("][").split(", ")))
|
| 57 |
ade_palette.append(tmp_list)
|
| 58 |
|
| 59 |
+
colormap = np.asarray(ade_palette)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
REPO_ID = "leonelhs/segmentators"
|
| 63 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename="segformer/segformer-b5-finetuned-ade-640-640.onnx")
|
| 64 |
+
|
| 65 |
|
|
|
|
| 66 |
sess_options = ort.SessionOptions()
|
| 67 |
sess_options.intra_op_num_threads = os.cpu_count()
|
| 68 |
+
sess = ort.InferenceSession(model_path, sess_options, providers=["CPUExecutionProvider"])
|
|
|
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
def label_to_color_image(label):
|
|
|
|
| 77 |
|
| 78 |
return colormap[label]
|
| 79 |
|
| 80 |
+
def predict(input_img):
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
img = cv2.imread(input_img)
|
| 83 |
img = cv2.resize(img, (640, 640)).astype(np.float32)
|
| 84 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
| 88 |
logits = sess.run(None, {"pixel_values": img_batch})[0]
|
| 89 |
|
| 90 |
logits = np.transpose(logits, (0, 2, 3, 1))
|
| 91 |
+
segmented_mask = np.argmax(logits, axis=-1)[0].astype("float32")
|
| 92 |
+
segmented_mask = cv2.resize(segmented_mask, (640, 640)).astype("uint8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
parts = []
|
| 96 |
+
unique_labels = np.unique(segmented_mask)
|
| 97 |
+
label_names = np.asarray(labels_list)
|
| 98 |
|
| 99 |
+
for label in unique_labels:
|
| 100 |
+
part = np.where(segmented_mask == label)
|
| 101 |
+
color_seg = np.full((640, 640, 3), 0, dtype=np.uint8)
|
| 102 |
+
color_seg[part[0], part[1], :] = colormap[label]
|
| 103 |
+
color_seg = cv2.cvtColor(color_seg, cv2.COLOR_BGR2GRAY)
|
| 104 |
+
parts.append((color_seg, label_names[label]))
|
| 105 |
|
| 106 |
+
return Image.fromarray(img.astype("uint8")), parts
|
| 107 |
|
| 108 |
+
with gr.Blocks(title="SegFormer") as app:
|
| 109 |
+
navbar = gr.Navbar(visible=True, main_page_name="Workspace")
|
| 110 |
+
gr.Markdown("## SegFormer(ADE20k) ONNX")
|
| 111 |
+
with gr.Row():
|
| 112 |
+
with gr.Column(scale=1):
|
| 113 |
+
inp = gr.Image(type="filepath", label="Upload Image")
|
| 114 |
+
btn_predict = gr.Button("Parse")
|
| 115 |
+
with gr.Column(scale=2):
|
| 116 |
+
out = gr.AnnotatedImage(label="Image parsed annotated")
|
| 117 |
|
| 118 |
+
btn_predict.click(predict, inputs=[inp], outputs=[out])
|
| 119 |
|
|
|
|
| 120 |
|
| 121 |
+
with app.route("About this", "/about"):
|
| 122 |
+
with open("README.md") as f:
|
| 123 |
+
for line in islice(f, 12, None):
|
| 124 |
+
gr.Markdown(line.strip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
app.launch(share=False, debug=True, show_error=True, mcp_server=True, pwa=True)
|
| 127 |
+
app.queue()
|
segformer-b5-finetuned-ade-640-640.onnx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f27cde5816910ae5a654fed8be58e7ad0c361244b5494df18ecf37d35d7ea33c
|
| 3 |
-
size 341726174
|
|
|
|
|
|
|
|
|
|
|
|