Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import tempfile | |
| import unittest | |
| from typing import Dict, List, Tuple | |
| import numpy as np | |
| import torch | |
| from diffusers.models import ModelMixin, UNet2DConditionModel | |
| from diffusers.training_utils import EMAModel | |
| from diffusers.utils import torch_device | |
| class ModelUtilsTest(unittest.TestCase): | |
| def test_accelerate_loading_error_message(self): | |
| with self.assertRaises(ValueError) as error_context: | |
| UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet") | |
| # make sure that error message states what keys are missing | |
| assert "conv_out.bias" in str(error_context.exception) | |
| class ModelTesterMixin: | |
| def test_from_save_pretrained(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| new_model = self.model_class.from_pretrained(tmpdirname) | |
| new_model.to(torch_device) | |
| with torch.no_grad(): | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps" and isinstance(model, ModelMixin): | |
| _ = model(**self.dummy_input) | |
| _ = new_model(**self.dummy_input) | |
| image = model(**inputs_dict) | |
| if isinstance(image, dict): | |
| image = image.sample | |
| new_image = new_model(**inputs_dict) | |
| if isinstance(new_image, dict): | |
| new_image = new_image.sample | |
| max_diff = (image - new_image).abs().sum().item() | |
| self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") | |
| def test_from_save_pretrained_dtype(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| for dtype in [torch.float32, torch.float16, torch.bfloat16]: | |
| if torch_device == "mps" and dtype == torch.bfloat16: | |
| continue | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.to(dtype) | |
| model.save_pretrained(tmpdirname) | |
| new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype) | |
| assert new_model.dtype == dtype | |
| new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype) | |
| assert new_model.dtype == dtype | |
| def test_determinism(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps" and isinstance(model, ModelMixin): | |
| model(**self.dummy_input) | |
| first = model(**inputs_dict) | |
| if isinstance(first, dict): | |
| first = first.sample | |
| second = model(**inputs_dict) | |
| if isinstance(second, dict): | |
| second = second.sample | |
| out_1 = first.cpu().numpy() | |
| out_2 = second.cpu().numpy() | |
| out_1 = out_1[~np.isnan(out_1)] | |
| out_2 = out_2[~np.isnan(out_2)] | |
| max_diff = np.amax(np.abs(out_1 - out_2)) | |
| self.assertLessEqual(max_diff, 1e-5) | |
| def test_output(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_forward_with_norm_groups(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| init_dict["norm_num_groups"] = 16 | |
| init_dict["block_out_channels"] = (16, 32) | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| self.assertIsNotNone(output) | |
| expected_shape = inputs_dict["sample"].shape | |
| self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") | |
| def test_forward_signature(self): | |
| init_dict, _ = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["sample", "timestep"] | |
| self.assertListEqual(arg_names[:2], expected_arg_names) | |
| def test_model_from_pretrained(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| # test if the model can be loaded from the config | |
| # and has all the expected shape | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| new_model = self.model_class.from_pretrained(tmpdirname) | |
| new_model.to(torch_device) | |
| new_model.eval() | |
| # check if all parameters shape are the same | |
| for param_name in model.state_dict().keys(): | |
| param_1 = model.state_dict()[param_name] | |
| param_2 = new_model.state_dict()[param_name] | |
| self.assertEqual(param_1.shape, param_2.shape) | |
| with torch.no_grad(): | |
| output_1 = model(**inputs_dict) | |
| if isinstance(output_1, dict): | |
| output_1 = output_1.sample | |
| output_2 = new_model(**inputs_dict) | |
| if isinstance(output_2, dict): | |
| output_2 = output_2.sample | |
| self.assertEqual(output_1.shape, output_2.shape) | |
| def test_training(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.train() | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) | |
| loss = torch.nn.functional.mse_loss(output, noise) | |
| loss.backward() | |
| def test_ema_training(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.train() | |
| ema_model = EMAModel(model.parameters()) | |
| output = model(**inputs_dict) | |
| if isinstance(output, dict): | |
| output = output.sample | |
| noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) | |
| loss = torch.nn.functional.mse_loss(output, noise) | |
| loss.backward() | |
| ema_model.step(model.parameters()) | |
| def test_outputs_equivalence(self): | |
| def set_nan_tensor_to_zero(t): | |
| # Temporary fallback until `aten::_index_put_impl_` is implemented in mps | |
| # Track progress in https://github.com/pytorch/pytorch/issues/77764 | |
| device = t.device | |
| if device.type == "mps": | |
| t = t.to("cpu") | |
| t[t != t] = 0 | |
| return t.to(device) | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| torch.allclose( | |
| set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
| ), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
| ), | |
| ) | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| model = self.model_class(**init_dict) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps" and isinstance(model, ModelMixin): | |
| model(**self.dummy_input) | |
| outputs_dict = model(**inputs_dict) | |
| outputs_tuple = model(**inputs_dict, return_dict=False) | |
| recursive_check(outputs_tuple, outputs_dict) | |
| def test_enable_disable_gradient_checkpointing(self): | |
| if not self.model_class._supports_gradient_checkpointing: | |
| return # Skip test if model does not support gradient checkpointing | |
| init_dict, _ = self.prepare_init_args_and_inputs_for_common() | |
| # at init model should have gradient checkpointing disabled | |
| model = self.model_class(**init_dict) | |
| self.assertFalse(model.is_gradient_checkpointing) | |
| # check enable works | |
| model.enable_gradient_checkpointing() | |
| self.assertTrue(model.is_gradient_checkpointing) | |
| # check disable works | |
| model.disable_gradient_checkpointing() | |
| self.assertFalse(model.is_gradient_checkpointing) | |
| def test_deprecated_kwargs(self): | |
| has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters | |
| has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0 | |
| if has_kwarg_in_model_class and not has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs" | |
| " under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are" | |
| " no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" | |
| " [<deprecated_argument>]`" | |
| ) | |
| if not has_kwarg_in_model_class and has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs" | |
| " under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to" | |
| f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument" | |
| " from `_deprecated_kwargs = [<deprecated_argument>]`" | |
| ) | |