Spaces:
Runtime error
Runtime error
| import contextlib | |
| import gc | |
| import inspect | |
| import io | |
| import re | |
| import tempfile | |
| import unittest | |
| from typing import Callable, Union | |
| import numpy as np | |
| import torch | |
| import diffusers | |
| from diffusers import ( | |
| CycleDiffusionPipeline, | |
| DanceDiffusionPipeline, | |
| DiffusionPipeline, | |
| RePaintPipeline, | |
| StableDiffusionDepth2ImgPipeline, | |
| StableDiffusionImg2ImgPipeline, | |
| ) | |
| from diffusers.utils import logging | |
| from diffusers.utils.import_utils import is_accelerate_available, is_xformers_available | |
| from diffusers.utils.testing_utils import require_torch, torch_device | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class PipelineTesterMixin: | |
| """ | |
| This mixin is designed to be used with unittest.TestCase classes. | |
| It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline, | |
| equivalence of dict and tuple outputs, etc. | |
| """ | |
| allowed_required_args = ["source_prompt", "prompt", "image", "mask_image", "example_image", "class_labels"] | |
| required_optional_params = ["generator", "num_inference_steps", "return_dict"] | |
| num_inference_steps_args = ["num_inference_steps"] | |
| # set these parameters to False in the child class if the pipeline does not support the corresponding functionality | |
| test_attention_slicing = True | |
| test_cpu_offload = True | |
| test_xformers_attention = True | |
| def get_generator(self, seed): | |
| device = torch_device if torch_device != "mps" else "cpu" | |
| generator = torch.Generator(device).manual_seed(seed) | |
| return generator | |
| def pipeline_class(self) -> Union[Callable, DiffusionPipeline]: | |
| raise NotImplementedError( | |
| "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. " | |
| "See existing pipeline tests for reference." | |
| ) | |
| def get_dummy_components(self): | |
| raise NotImplementedError( | |
| "You need to implement `get_dummy_components(self)` in the child test class. " | |
| "See existing pipeline tests for reference." | |
| ) | |
| def get_dummy_inputs(self, device, seed=0): | |
| raise NotImplementedError( | |
| "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. " | |
| "See existing pipeline tests for reference." | |
| ) | |
| def tearDown(self): | |
| # clean up the VRAM after each test in case of CUDA runtime errors | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_save_load_local(self): | |
| if torch_device == "mps" and self.pipeline_class in ( | |
| DanceDiffusionPipeline, | |
| CycleDiffusionPipeline, | |
| RePaintPipeline, | |
| StableDiffusionImg2ImgPipeline, | |
| ): | |
| # FIXME: inconsistent outputs on MPS | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps": | |
| _ = pipe(**self.get_dummy_inputs(torch_device)) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs)[0] | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir) | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
| pipe_loaded.to(torch_device) | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_loaded = pipe_loaded(**inputs)[0] | |
| max_diff = np.abs(output - output_loaded).max() | |
| self.assertLess(max_diff, 1e-4) | |
| def test_pipeline_call_implements_required_args(self): | |
| assert hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method" | |
| parameters = inspect.signature(self.pipeline_class.__call__).parameters | |
| required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} | |
| required_parameters.pop("self") | |
| required_parameters = set(required_parameters) | |
| optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) | |
| for param in required_parameters: | |
| if param == "kwargs": | |
| # kwargs can be added if arguments of pipeline call function are deprecated | |
| continue | |
| assert param in self.allowed_required_args | |
| optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) | |
| for param in self.required_optional_params: | |
| assert param in optional_parameters | |
| def test_inference_batch_consistent(self): | |
| self._test_inference_batch_consistent() | |
| def _test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| logger = logging.get_logger(pipe.__module__) | |
| logger.setLevel(level=diffusers.logging.FATAL) | |
| # batchify inputs | |
| for batch_size in batch_sizes: | |
| batched_inputs = {} | |
| for name, value in inputs.items(): | |
| if name in self.allowed_required_args: | |
| # prompt is string | |
| if name == "prompt": | |
| len_prompt = len(value) | |
| # make unequal batch sizes | |
| batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
| # make last batch super long | |
| batched_inputs[name][-1] = 2000 * "very long" | |
| # or else we have images | |
| else: | |
| batched_inputs[name] = batch_size * [value] | |
| elif name == "batch_size": | |
| batched_inputs[name] = batch_size | |
| else: | |
| batched_inputs[name] = value | |
| for arg in self.num_inference_steps_args: | |
| batched_inputs[arg] = inputs[arg] | |
| batched_inputs["output_type"] = None | |
| if self.pipeline_class.__name__ == "DanceDiffusionPipeline": | |
| batched_inputs.pop("output_type") | |
| output = pipe(**batched_inputs) | |
| assert len(output[0]) == batch_size | |
| batched_inputs["output_type"] = "np" | |
| if self.pipeline_class.__name__ == "DanceDiffusionPipeline": | |
| batched_inputs.pop("output_type") | |
| output = pipe(**batched_inputs)[0] | |
| assert output.shape[0] == batch_size | |
| logger.setLevel(level=diffusers.logging.WARNING) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical() | |
| def _test_inference_batch_single_identical( | |
| self, test_max_difference=None, test_mean_pixel_difference=None, relax_max_difference=False | |
| ): | |
| if self.pipeline_class.__name__ in ["CycleDiffusionPipeline", "RePaintPipeline"]: | |
| # RePaint can hardly be made deterministic since the scheduler is currently always | |
| # nondeterministic | |
| # CycleDiffusion is also slightly nondeterministic | |
| return | |
| if test_max_difference is None: | |
| # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems | |
| # make sure that batched and non-batched is identical | |
| test_max_difference = torch_device != "mps" | |
| if test_mean_pixel_difference is None: | |
| # TODO same as above | |
| test_mean_pixel_difference = torch_device != "mps" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| logger = logging.get_logger(pipe.__module__) | |
| logger.setLevel(level=diffusers.logging.FATAL) | |
| # batchify inputs | |
| batched_inputs = {} | |
| batch_size = 3 | |
| for name, value in inputs.items(): | |
| if name in self.allowed_required_args: | |
| # prompt is string | |
| if name == "prompt": | |
| len_prompt = len(value) | |
| # make unequal batch sizes | |
| batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
| # make last batch super long | |
| batched_inputs[name][-1] = 2000 * "very long" | |
| # or else we have images | |
| else: | |
| batched_inputs[name] = batch_size * [value] | |
| elif name == "batch_size": | |
| batched_inputs[name] = batch_size | |
| elif name == "generator": | |
| batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)] | |
| else: | |
| batched_inputs[name] = value | |
| for arg in self.num_inference_steps_args: | |
| batched_inputs[arg] = inputs[arg] | |
| if self.pipeline_class.__name__ != "DanceDiffusionPipeline": | |
| batched_inputs["output_type"] = "np" | |
| output_batch = pipe(**batched_inputs) | |
| assert output_batch[0].shape[0] == batch_size | |
| inputs["generator"] = self.get_generator(0) | |
| output = pipe(**inputs) | |
| logger.setLevel(level=diffusers.logging.WARNING) | |
| if test_max_difference: | |
| if relax_max_difference: | |
| # Taking the median of the largest <n> differences | |
| # is resilient to outliers | |
| diff = np.abs(output_batch[0][0] - output[0][0]) | |
| diff = diff.flatten() | |
| diff.sort() | |
| max_diff = np.median(diff[-5:]) | |
| else: | |
| max_diff = np.abs(output_batch[0][0] - output[0][0]).max() | |
| assert max_diff < 1e-4 | |
| if test_mean_pixel_difference: | |
| assert_mean_pixel_difference(output_batch[0][0], output[0][0]) | |
| def test_dict_tuple_outputs_equivalent(self): | |
| if torch_device == "mps" and self.pipeline_class in ( | |
| DanceDiffusionPipeline, | |
| CycleDiffusionPipeline, | |
| RePaintPipeline, | |
| StableDiffusionImg2ImgPipeline, | |
| ): | |
| # FIXME: inconsistent outputs on MPS | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps": | |
| _ = pipe(**self.get_dummy_inputs(torch_device)) | |
| output = pipe(**self.get_dummy_inputs(torch_device))[0] | |
| output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0] | |
| max_diff = np.abs(output - output_tuple).max() | |
| self.assertLess(max_diff, 1e-4) | |
| def test_components_function(self): | |
| init_components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**init_components) | |
| self.assertTrue(hasattr(pipe, "components")) | |
| self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |
| def test_float16_inference(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| for name, module in components.items(): | |
| if hasattr(module, "half"): | |
| components[name] = module.half() | |
| pipe_fp16 = self.pipeline_class(**components) | |
| pipe_fp16.to(torch_device) | |
| pipe_fp16.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(torch_device))[0] | |
| output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0] | |
| max_diff = np.abs(output - output_fp16).max() | |
| self.assertLess(max_diff, 1e-2, "The outputs of the fp16 and fp32 pipelines are too different.") | |
| def test_save_load_float16(self): | |
| components = self.get_dummy_components() | |
| for name, module in components.items(): | |
| if hasattr(module, "half"): | |
| components[name] = module.to(torch_device).half() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs)[0] | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir) | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) | |
| pipe_loaded.to(torch_device) | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| for name, component in pipe_loaded.components.items(): | |
| if hasattr(component, "dtype"): | |
| self.assertTrue( | |
| component.dtype == torch.float16, | |
| f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", | |
| ) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_loaded = pipe_loaded(**inputs)[0] | |
| max_diff = np.abs(output - output_loaded).max() | |
| self.assertLess(max_diff, 3e-3, "The output of the fp16 pipeline changed after saving and loading.") | |
| def test_save_load_optional_components(self): | |
| if not hasattr(self.pipeline_class, "_optional_components"): | |
| return | |
| if torch_device == "mps" and self.pipeline_class in ( | |
| DanceDiffusionPipeline, | |
| CycleDiffusionPipeline, | |
| RePaintPipeline, | |
| StableDiffusionImg2ImgPipeline, | |
| ): | |
| # FIXME: inconsistent outputs on MPS | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps": | |
| _ = pipe(**self.get_dummy_inputs(torch_device)) | |
| # set all optional components to None | |
| for optional_component in pipe._optional_components: | |
| setattr(pipe, optional_component, None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs)[0] | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir) | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
| pipe_loaded.to(torch_device) | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| for optional_component in pipe._optional_components: | |
| self.assertTrue( | |
| getattr(pipe_loaded, optional_component) is None, | |
| f"`{optional_component}` did not stay set to None after loading.", | |
| ) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_loaded = pipe_loaded(**inputs)[0] | |
| max_diff = np.abs(output - output_loaded).max() | |
| self.assertLess(max_diff, 1e-4) | |
| def test_to_device(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.to("cpu") | |
| model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] | |
| self.assertTrue(all(device == "cpu" for device in model_devices)) | |
| output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | |
| self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
| pipe.to("cuda") | |
| model_devices = [component.device.type for component in components.values() if hasattr(component, "device")] | |
| self.assertTrue(all(device == "cuda" for device in model_devices)) | |
| output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] | |
| self.assertTrue(np.isnan(output_cuda).sum() == 0) | |
| def test_attention_slicing_forward_pass(self): | |
| self._test_attention_slicing_forward_pass() | |
| def _test_attention_slicing_forward_pass(self, test_max_difference=True): | |
| if not self.test_attention_slicing: | |
| return | |
| if torch_device == "mps" and self.pipeline_class in ( | |
| DanceDiffusionPipeline, | |
| CycleDiffusionPipeline, | |
| RePaintPipeline, | |
| StableDiffusionImg2ImgPipeline, | |
| StableDiffusionDepth2ImgPipeline, | |
| ): | |
| # FIXME: inconsistent outputs on MPS | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # Warmup pass when using mps (see #372) | |
| if torch_device == "mps": | |
| _ = pipe(**self.get_dummy_inputs(torch_device)) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_without_slicing = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=1) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_slicing = pipe(**inputs)[0] | |
| if test_max_difference: | |
| max_diff = np.abs(output_with_slicing - output_without_slicing).max() | |
| self.assertLess(max_diff, 1e-3, "Attention slicing should not affect the inference results") | |
| assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0]) | |
| def test_cpu_offload_forward_pass(self): | |
| if not self.test_cpu_offload: | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_without_offload = pipe(**inputs)[0] | |
| pipe.enable_sequential_cpu_offload() | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_offload = pipe(**inputs)[0] | |
| max_diff = np.abs(output_with_offload - output_without_offload).max() | |
| self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results") | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| if not self.test_xformers_attention: | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_without_offload = pipe(**inputs)[0] | |
| pipe.enable_xformers_memory_efficient_attention() | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_offload = pipe(**inputs)[0] | |
| max_diff = np.abs(output_with_offload - output_without_offload).max() | |
| self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") | |
| def test_progress_bar(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
| _ = pipe(**inputs) | |
| stderr = stderr.getvalue() | |
| # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, | |
| # so we just match "5" in "#####| 1/5 [00:01<00:00]" | |
| max_steps = re.search("/(.*?) ", stderr).group(1) | |
| self.assertTrue(max_steps is not None and len(max_steps) > 0) | |
| self.assertTrue( | |
| f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" | |
| ) | |
| pipe.set_progress_bar_config(disable=True) | |
| with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
| _ = pipe(**inputs) | |
| self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") | |
| # Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used. | |
| # This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a | |
| # reference image. | |
| def assert_mean_pixel_difference(image, expected_image): | |
| image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32) | |
| expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32) | |
| avg_diff = np.abs(image - expected_image).mean() | |
| assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average" | |