Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import json | |
| import os | |
| import tempfile | |
| import unittest | |
| from typing import Dict, List, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import diffusers | |
| from diffusers import ( | |
| DDIMScheduler, | |
| DDPMScheduler, | |
| DEISMultistepScheduler, | |
| DPMSolverMultistepScheduler, | |
| DPMSolverSinglestepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| HeunDiscreteScheduler, | |
| IPNDMScheduler, | |
| KDPM2AncestralDiscreteScheduler, | |
| KDPM2DiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ScoreSdeVeScheduler, | |
| UnCLIPScheduler, | |
| VQDiffusionScheduler, | |
| logging, | |
| ) | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| from diffusers.utils import torch_device | |
| from diffusers.utils.testing_utils import CaptureLogger | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| class SchedulerObject(SchedulerMixin, ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| e=[1, 3], | |
| ): | |
| pass | |
| class SchedulerObject2(SchedulerMixin, ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| f=[1, 3], | |
| ): | |
| pass | |
| class SchedulerObject3(SchedulerMixin, ConfigMixin): | |
| config_name = "config.json" | |
| def __init__( | |
| self, | |
| a=2, | |
| b=5, | |
| c=(2, 5), | |
| d="for diffusion", | |
| e=[1, 3], | |
| f=[1, 3], | |
| ): | |
| pass | |
| class SchedulerBaseTests(unittest.TestCase): | |
| def test_save_load_from_different_config(self): | |
| obj = SchedulerObject() | |
| # mock add obj class to `diffusers` | |
| setattr(diffusers, "SchedulerObject", SchedulerObject) | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| obj.save_config(tmpdirname) | |
| with CaptureLogger(logger) as cap_logger_1: | |
| config = SchedulerObject2.load_config(tmpdirname) | |
| new_obj_1 = SchedulerObject2.from_config(config) | |
| # now save a config parameter that is not expected | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | |
| data = json.load(f) | |
| data["unexpected"] = True | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | |
| json.dump(data, f) | |
| with CaptureLogger(logger) as cap_logger_2: | |
| config = SchedulerObject.load_config(tmpdirname) | |
| new_obj_2 = SchedulerObject.from_config(config) | |
| with CaptureLogger(logger) as cap_logger_3: | |
| config = SchedulerObject2.load_config(tmpdirname) | |
| new_obj_3 = SchedulerObject2.from_config(config) | |
| assert new_obj_1.__class__ == SchedulerObject2 | |
| assert new_obj_2.__class__ == SchedulerObject | |
| assert new_obj_3.__class__ == SchedulerObject2 | |
| assert cap_logger_1.out == "" | |
| assert ( | |
| cap_logger_2.out | |
| == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | |
| " will" | |
| " be ignored. Please verify your config.json configuration file.\n" | |
| ) | |
| assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out | |
| def test_save_load_compatible_schedulers(self): | |
| SchedulerObject2._compatibles = ["SchedulerObject"] | |
| SchedulerObject._compatibles = ["SchedulerObject2"] | |
| obj = SchedulerObject() | |
| # mock add obj class to `diffusers` | |
| setattr(diffusers, "SchedulerObject", SchedulerObject) | |
| setattr(diffusers, "SchedulerObject2", SchedulerObject2) | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| obj.save_config(tmpdirname) | |
| # now save a config parameter that is expected by another class, but not origin class | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | |
| data = json.load(f) | |
| data["f"] = [0, 0] | |
| data["unexpected"] = True | |
| with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | |
| json.dump(data, f) | |
| with CaptureLogger(logger) as cap_logger: | |
| config = SchedulerObject.load_config(tmpdirname) | |
| new_obj = SchedulerObject.from_config(config) | |
| assert new_obj.__class__ == SchedulerObject | |
| assert ( | |
| cap_logger.out | |
| == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | |
| " will" | |
| " be ignored. Please verify your config.json configuration file.\n" | |
| ) | |
| def test_save_load_from_different_config_comp_schedulers(self): | |
| SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"] | |
| SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"] | |
| SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"] | |
| obj = SchedulerObject() | |
| # mock add obj class to `diffusers` | |
| setattr(diffusers, "SchedulerObject", SchedulerObject) | |
| setattr(diffusers, "SchedulerObject2", SchedulerObject2) | |
| setattr(diffusers, "SchedulerObject3", SchedulerObject3) | |
| logger = logging.get_logger("diffusers.configuration_utils") | |
| logger.setLevel(diffusers.logging.INFO) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| obj.save_config(tmpdirname) | |
| with CaptureLogger(logger) as cap_logger_1: | |
| config = SchedulerObject.load_config(tmpdirname) | |
| new_obj_1 = SchedulerObject.from_config(config) | |
| with CaptureLogger(logger) as cap_logger_2: | |
| config = SchedulerObject2.load_config(tmpdirname) | |
| new_obj_2 = SchedulerObject2.from_config(config) | |
| with CaptureLogger(logger) as cap_logger_3: | |
| config = SchedulerObject3.load_config(tmpdirname) | |
| new_obj_3 = SchedulerObject3.from_config(config) | |
| assert new_obj_1.__class__ == SchedulerObject | |
| assert new_obj_2.__class__ == SchedulerObject2 | |
| assert new_obj_3.__class__ == SchedulerObject3 | |
| assert cap_logger_1.out == "" | |
| assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | |
| assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | |
| class SchedulerCommonTest(unittest.TestCase): | |
| scheduler_classes = () | |
| forward_default_kwargs = () | |
| def dummy_sample(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| sample = torch.rand((batch_size, num_channels, height, width)) | |
| return sample | |
| def dummy_sample_deter(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| num_elems = batch_size * num_channels * height * width | |
| sample = torch.arange(num_elems) | |
| sample = sample.reshape(num_channels, height, width, batch_size) | |
| sample = sample / num_elems | |
| sample = sample.permute(3, 0, 1, 2) | |
| return sample | |
| def get_scheduler_config(self): | |
| raise NotImplementedError | |
| def dummy_model(self): | |
| def model(sample, t, *args): | |
| return sample * t / (t + 1) | |
| return model | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| # TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| time_step = float(time_step) | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, time_step) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| kwargs.update(forward_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| time_step = float(time_step) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, time_step) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| timestep = 1 | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| timestep = float(timestep) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, timestep) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_compatibles(self): | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| assert all(c is not None for c in scheduler.compatibles) | |
| for comp_scheduler_cls in scheduler.compatibles: | |
| comp_scheduler = comp_scheduler_cls.from_config(scheduler.config) | |
| assert comp_scheduler is not None | |
| new_scheduler = scheduler_class.from_config(comp_scheduler.config) | |
| new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config} | |
| scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config} | |
| # make sure that configs are essentially identical | |
| assert new_scheduler_config == dict(scheduler.config) | |
| # make sure that only differences are for configs that are not in init | |
| init_keys = inspect.signature(scheduler_class.__init__).parameters.keys() | |
| assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set() | |
| def test_from_pretrained(self): | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_pretrained(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| assert scheduler.config == new_scheduler.config | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| timestep_0 = 0 | |
| timestep_1 = 1 | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| timestep_0 = float(timestep_0) | |
| timestep_1 = float(timestep_1) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, timestep_0) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_scheduler_outputs_equivalence(self): | |
| def set_nan_tensor_to_zero(t): | |
| t[t != t] = 0 | |
| return t | |
| def recursive_check(tuple_object, dict_object): | |
| if isinstance(tuple_object, (List, Tuple)): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif isinstance(tuple_object, Dict): | |
| for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | |
| recursive_check(tuple_iterable_value, dict_iterable_value) | |
| elif tuple_object is None: | |
| return | |
| else: | |
| self.assertTrue( | |
| torch.allclose( | |
| set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | |
| ), | |
| msg=( | |
| "Tuple and dict output are not equal. Difference:" | |
| f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | |
| f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | |
| f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | |
| ), | |
| ) | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", 50) | |
| timestep = 0 | |
| if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler: | |
| timestep = 1 | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | |
| timestep = float(timestep) | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class == VQDiffusionScheduler: | |
| num_vec_classes = scheduler_config["num_vec_classes"] | |
| sample = self.dummy_sample(num_vec_classes) | |
| model = self.dummy_model(num_vec_classes) | |
| residual = model(sample, timestep) | |
| else: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
| if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | |
| kwargs["generator"] = torch.manual_seed(0) | |
| outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) | |
| recursive_check(outputs_tuple, outputs_dict) | |
| def test_scheduler_public_api(self): | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| if scheduler_class != VQDiffusionScheduler: | |
| self.assertTrue( | |
| hasattr(scheduler, "init_noise_sigma"), | |
| f"{scheduler_class} does not implement a required attribute `init_noise_sigma`", | |
| ) | |
| self.assertTrue( | |
| hasattr(scheduler, "scale_model_input"), | |
| ( | |
| f"{scheduler_class} does not implement a required class method `scale_model_input(sample," | |
| " timestep)`" | |
| ), | |
| ) | |
| self.assertTrue( | |
| hasattr(scheduler, "step"), | |
| f"{scheduler_class} does not implement a required class method `step(...)`", | |
| ) | |
| if scheduler_class != VQDiffusionScheduler: | |
| sample = self.dummy_sample | |
| scaled_sample = scheduler.scale_model_input(sample, 0.0) | |
| self.assertEqual(sample.shape, scaled_sample.shape) | |
| def test_add_noise_device(self): | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class == IPNDMScheduler: | |
| continue | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(100) | |
| sample = self.dummy_sample.to(torch_device) | |
| scaled_sample = scheduler.scale_model_input(sample, 0.0) | |
| self.assertEqual(sample.shape, scaled_sample.shape) | |
| noise = torch.randn_like(scaled_sample).to(torch_device) | |
| t = scheduler.timesteps[5][None] | |
| noised = scheduler.add_noise(scaled_sample, noise, t) | |
| self.assertEqual(noised.shape, scaled_sample.shape) | |
| def test_deprecated_kwargs(self): | |
| for scheduler_class in self.scheduler_classes: | |
| has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters | |
| has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 | |
| if has_kwarg_in_model_class and not has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" | |
| " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" | |
| " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" | |
| " [<deprecated_argument>]`" | |
| ) | |
| if not has_kwarg_in_model_class and has_deprecated_kwarg: | |
| raise ValueError( | |
| f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" | |
| " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" | |
| f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" | |
| " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`" | |
| ) | |
| def test_trained_betas(self): | |
| for scheduler_class in self.scheduler_classes: | |
| if scheduler_class == VQDiffusionScheduler: | |
| continue | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.0, 0.1])) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_pretrained(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| assert scheduler.betas.tolist() == new_scheduler.betas.tolist() | |
| class DDPMSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (DDPMScheduler,) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| "variance_type": "fixed_small", | |
| "clip_sample": True, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [1, 5, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "squaredcos_cap_v2"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_variance_type(self): | |
| for variance in ["fixed_small", "fixed_large", "other"]: | |
| self.check_over_configs(variance_type=variance) | |
| def test_clip_sample(self): | |
| for clip_sample in [True, False]: | |
| self.check_over_configs(clip_sample=clip_sample) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "sample", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_time_indices(self): | |
| for t in [0, 500, 999]: | |
| self.check_over_forward(time_step=t) | |
| def test_variance(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5 | |
| def test_full_loop_no_noise(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_trained_timesteps = len(scheduler) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| generator = torch.manual_seed(0) | |
| for t in reversed(range(num_trained_timesteps)): | |
| # 1. predict noise residual | |
| residual = model(sample, t) | |
| # 2. predict previous mean of sample x_t-1 | |
| pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
| # if t > 0: | |
| # noise = self.dummy_sample_deter | |
| # variance = scheduler.get_variance(t) ** (0.5) * noise | |
| # | |
| # sample = pred_prev_sample + variance | |
| sample = pred_prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 258.9606) < 1e-2 | |
| assert abs(result_mean.item() - 0.3372) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_trained_timesteps = len(scheduler) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| generator = torch.manual_seed(0) | |
| for t in reversed(range(num_trained_timesteps)): | |
| # 1. predict noise residual | |
| residual = model(sample, t) | |
| # 2. predict previous mean of sample x_t-1 | |
| pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
| # if t > 0: | |
| # noise = self.dummy_sample_deter | |
| # variance = scheduler.get_variance(t) ** (0.5) * noise | |
| # | |
| # sample = pred_prev_sample + variance | |
| sample = pred_prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 202.0296) < 1e-2 | |
| assert abs(result_mean.item() - 0.2631) < 1e-3 | |
| class DDIMSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (DDIMScheduler,) | |
| forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50)) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| "clip_sample": True, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps, eta = 10, 0.0 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| for t in scheduler.timesteps: | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample, eta).prev_sample | |
| return sample | |
| def test_timesteps(self): | |
| for timesteps in [100, 500, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_steps_offset(self): | |
| for steps_offset in [0, 1]: | |
| self.check_over_configs(steps_offset=steps_offset) | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(steps_offset=1) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(5) | |
| assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1])) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "squaredcos_cap_v2"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_clip_sample(self): | |
| for clip_sample in [True, False]: | |
| self.check_over_configs(clip_sample=clip_sample) | |
| def test_time_indices(self): | |
| for t in [1, 10, 49]: | |
| self.check_over_forward(time_step=t) | |
| def test_inference_steps(self): | |
| for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]): | |
| self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) | |
| def test_eta(self): | |
| for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]): | |
| self.check_over_forward(time_step=t, eta=eta) | |
| def test_variance(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5 | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 172.0067) < 1e-2 | |
| assert abs(result_mean.item() - 0.223967) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| sample = self.full_loop(prediction_type="v_prediction") | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 52.5302) < 1e-2 | |
| assert abs(result_mean.item() - 0.0684) < 1e-3 | |
| def test_full_loop_with_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 149.8295) < 1e-2 | |
| assert abs(result_mean.item() - 0.1951) < 1e-3 | |
| def test_full_loop_with_no_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 149.0784) < 1e-2 | |
| assert abs(result_mean.item() - 0.1941) < 1e-3 | |
| class DPMSolverSinglestepSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (DPMSolverSinglestepScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 25),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| "solver_order": 2, | |
| "prediction_type": "epsilon", | |
| "thresholding": False, | |
| "sample_max_value": 1.0, | |
| "algorithm_type": "dpmsolver++", | |
| "solver_type": "midpoint", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output, new_output = sample, sample | |
| for t in range(time_step, time_step + scheduler.config.solver_order + 1): | |
| output = scheduler.step(residual, t, output, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| pass | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals (must be after setting timesteps) | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| # copy over dummy past residuals | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residual (must be after setting timesteps) | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| return sample | |
| def test_timesteps(self): | |
| for timesteps in [25, 50, 100, 999, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_thresholding(self): | |
| self.check_over_configs(thresholding=False) | |
| for order in [1, 2, 3]: | |
| for solver_type in ["midpoint", "heun"]: | |
| for threshold in [0.5, 1.0, 2.0]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs( | |
| thresholding=True, | |
| prediction_type=prediction_type, | |
| sample_max_value=threshold, | |
| algorithm_type="dpmsolver++", | |
| solver_order=order, | |
| solver_type=solver_type, | |
| ) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_solver_order_and_type(self): | |
| for algorithm_type in ["dpmsolver", "dpmsolver++"]: | |
| for solver_type in ["midpoint", "heun"]: | |
| for order in [1, 2, 3]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| sample = self.full_loop( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| assert not torch.isnan(sample).any(), "Samples have nan numbers" | |
| def test_lower_order_final(self): | |
| self.check_over_configs(lower_order_final=True) | |
| self.check_over_configs(lower_order_final=False) | |
| def test_inference_steps(self): | |
| for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: | |
| self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.2791) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| sample = self.full_loop(prediction_type="v_prediction") | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.1453) < 1e-3 | |
| def test_fp16_support(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter.half() | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| assert sample.dtype == torch.float16 | |
| class DPMSolverMultistepSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (DPMSolverMultistepScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 25),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| "solver_order": 2, | |
| "prediction_type": "epsilon", | |
| "thresholding": False, | |
| "sample_max_value": 1.0, | |
| "algorithm_type": "dpmsolver++", | |
| "solver_type": "midpoint", | |
| "lower_order_final": False, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output, new_output = sample, sample | |
| for t in range(time_step, time_step + scheduler.config.solver_order + 1): | |
| output = scheduler.step(residual, t, output, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| pass | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals (must be after setting timesteps) | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| # copy over dummy past residuals | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residual (must be after setting timesteps) | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| return sample | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # copy over dummy past residuals (must be done after set_timesteps) | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| time_step_0 = scheduler.timesteps[5] | |
| time_step_1 = scheduler.timesteps[6] | |
| output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_timesteps(self): | |
| for timesteps in [25, 50, 100, 999, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_thresholding(self): | |
| self.check_over_configs(thresholding=False) | |
| for order in [1, 2, 3]: | |
| for solver_type in ["midpoint", "heun"]: | |
| for threshold in [0.5, 1.0, 2.0]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs( | |
| thresholding=True, | |
| prediction_type=prediction_type, | |
| sample_max_value=threshold, | |
| algorithm_type="dpmsolver++", | |
| solver_order=order, | |
| solver_type=solver_type, | |
| ) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_solver_order_and_type(self): | |
| for algorithm_type in ["dpmsolver", "dpmsolver++"]: | |
| for solver_type in ["midpoint", "heun"]: | |
| for order in [1, 2, 3]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| sample = self.full_loop( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| assert not torch.isnan(sample).any(), "Samples have nan numbers" | |
| def test_lower_order_final(self): | |
| self.check_over_configs(lower_order_final=True) | |
| self.check_over_configs(lower_order_final=False) | |
| def test_inference_steps(self): | |
| for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: | |
| self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.3301) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| sample = self.full_loop(prediction_type="v_prediction") | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.2251) < 1e-3 | |
| def test_fp16_support(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter.half() | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| assert sample.dtype == torch.float16 | |
| class PNDMSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (PNDMScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 50),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| scheduler.ets = dummy_past_residuals[:] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| new_scheduler.ets = dummy_past_residuals[:] | |
| output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| pass | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals (must be after setting timesteps) | |
| scheduler.ets = dummy_past_residuals[:] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| # copy over dummy past residuals | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residual (must be after setting timesteps) | |
| new_scheduler.ets = dummy_past_residuals[:] | |
| output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.prk_timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step_prk(residual, t, sample).prev_sample | |
| for i, t in enumerate(scheduler.plms_timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step_plms(residual, t, sample).prev_sample | |
| return sample | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # copy over dummy past residuals (must be done after set_timesteps) | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | |
| scheduler.ets = dummy_past_residuals[:] | |
| output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_timesteps(self): | |
| for timesteps in [100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_steps_offset(self): | |
| for steps_offset in [0, 1]: | |
| self.check_over_configs(steps_offset=steps_offset) | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(steps_offset=1) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(10) | |
| assert torch.equal( | |
| scheduler.timesteps, | |
| torch.LongTensor( | |
| [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] | |
| ), | |
| ) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "squaredcos_cap_v2"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_time_indices(self): | |
| for t in [1, 5, 10]: | |
| self.check_over_forward(time_step=t) | |
| def test_inference_steps(self): | |
| for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): | |
| self.check_over_forward(num_inference_steps=num_inference_steps) | |
| def test_pow_of_3_inference_steps(self): | |
| # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 | |
| num_inference_steps = 27 | |
| for scheduler_class in self.scheduler_classes: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # before power of 3 fix, would error on first step, so we only need to do two | |
| for i, t in enumerate(scheduler.prk_timesteps[:2]): | |
| sample = scheduler.step_prk(residual, t, sample).prev_sample | |
| def test_inference_plms_no_past_residuals(self): | |
| with self.assertRaises(ValueError): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 198.1318) < 1e-2 | |
| assert abs(result_mean.item() - 0.2580) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| sample = self.full_loop(prediction_type="v_prediction") | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 67.3986) < 1e-2 | |
| assert abs(result_mean.item() - 0.0878) < 1e-3 | |
| def test_full_loop_with_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 230.0399) < 1e-2 | |
| assert abs(result_mean.item() - 0.2995) < 1e-3 | |
| def test_full_loop_with_no_set_alpha_to_one(self): | |
| # We specify different beta, so that the first alpha is 0.99 | |
| sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 186.9482) < 1e-2 | |
| assert abs(result_mean.item() - 0.2434) < 1e-3 | |
| class ScoreSdeVeSchedulerTest(unittest.TestCase): | |
| # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration) | |
| scheduler_classes = (ScoreSdeVeScheduler,) | |
| forward_default_kwargs = () | |
| def dummy_sample(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| sample = torch.rand((batch_size, num_channels, height, width)) | |
| return sample | |
| def dummy_sample_deter(self): | |
| batch_size = 4 | |
| num_channels = 3 | |
| height = 8 | |
| width = 8 | |
| num_elems = batch_size * num_channels * height * width | |
| sample = torch.arange(num_elems) | |
| sample = sample.reshape(num_channels, height, width, batch_size) | |
| sample = sample / num_elems | |
| sample = sample.permute(3, 0, 1, 2) | |
| return sample | |
| def dummy_model(self): | |
| def model(sample, t, *args): | |
| return sample * t / (t + 1) | |
| return model | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 2000, | |
| "snr": 0.15, | |
| "sigma_min": 0.01, | |
| "sigma_max": 1348, | |
| "sampling_eps": 1e-5, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| for scheduler_class in self.scheduler_classes: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| output = scheduler.step_pred( | |
| residual, time_step, sample, generator=torch.manual_seed(0), **kwargs | |
| ).prev_sample | |
| new_output = new_scheduler.step_pred( | |
| residual, time_step, sample, generator=torch.manual_seed(0), **kwargs | |
| ).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample | |
| new_output = new_scheduler.step_correct( | |
| residual, sample, generator=torch.manual_seed(0), **kwargs | |
| ).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical" | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| kwargs.update(forward_kwargs) | |
| for scheduler_class in self.scheduler_classes: | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| output = scheduler.step_pred( | |
| residual, time_step, sample, generator=torch.manual_seed(0), **kwargs | |
| ).prev_sample | |
| new_output = new_scheduler.step_pred( | |
| residual, time_step, sample, generator=torch.manual_seed(0), **kwargs | |
| ).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample | |
| new_output = new_scheduler.step_correct( | |
| residual, sample, generator=torch.manual_seed(0), **kwargs | |
| ).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical" | |
| def test_timesteps(self): | |
| for timesteps in [10, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_sigmas(self): | |
| for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]): | |
| self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max) | |
| def test_time_indices(self): | |
| for t in [0.1, 0.5, 0.75]: | |
| self.check_over_forward(time_step=t) | |
| def test_full_loop_no_noise(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 3 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_sigmas(num_inference_steps) | |
| scheduler.set_timesteps(num_inference_steps) | |
| generator = torch.manual_seed(0) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sigma_t = scheduler.sigmas[i] | |
| for _ in range(scheduler.config.correct_steps): | |
| with torch.no_grad(): | |
| model_output = model(sample, sigma_t) | |
| sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample | |
| with torch.no_grad(): | |
| model_output = model(sample, sigma_t) | |
| output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs) | |
| sample, _ = output.prev_sample, output.prev_sample_mean | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert np.isclose(result_sum.item(), 14372758528.0) | |
| assert np.isclose(result_mean.item(), 18714530.0) | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample | |
| output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| class LMSDiscreteSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (LMSDiscreteScheduler,) | |
| num_inference_steps = 10 | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1100, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [10, 50, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "scaled_linear"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_time_indices(self): | |
| for t in [0, 500, 800]: | |
| self.check_over_forward(time_step=t) | |
| def test_full_loop_no_noise(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 1006.388) < 1e-2 | |
| assert abs(result_mean.item() - 1.31) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 0.0017) < 1e-2 | |
| assert abs(result_mean.item() - 2.2676e-06) < 1e-3 | |
| def test_full_loop_device(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 1006.388) < 1e-2 | |
| assert abs(result_mean.item() - 1.31) < 1e-3 | |
| class EulerDiscreteSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (EulerDiscreteScheduler,) | |
| num_inference_steps = 10 | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1100, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [10, 50, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "scaled_linear"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_full_loop_no_noise(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 10.0807) < 1e-2 | |
| assert abs(result_mean.item() - 0.0131) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 0.0002) < 1e-2 | |
| assert abs(result_mean.item() - 2.2676e-06) < 1e-3 | |
| def test_full_loop_device(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for t in scheduler.timesteps: | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 10.0807) < 1e-2 | |
| assert abs(result_mean.item() - 0.0131) < 1e-3 | |
| class EulerAncestralDiscreteSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (EulerAncestralDiscreteScheduler,) | |
| num_inference_steps = 10 | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1100, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [10, 50, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "scaled_linear"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_full_loop_no_noise(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 152.3192) < 1e-2 | |
| assert abs(result_mean.item() - 0.1983) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 108.4439) < 1e-2 | |
| assert abs(result_mean.item() - 0.1412) < 1e-3 | |
| def test_full_loop_device(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for t in scheduler.timesteps: | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 152.3192) < 1e-2 | |
| assert abs(result_mean.item() - 0.1983) < 1e-3 | |
| class IPNDMSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (IPNDMScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 50),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = {"num_train_timesteps": 1000} | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| scheduler.ets = dummy_past_residuals[:] | |
| if time_step is None: | |
| time_step = scheduler.timesteps[len(scheduler.timesteps) // 2] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| new_scheduler.ets = dummy_past_residuals[:] | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| pass | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals (must be after setting timesteps) | |
| scheduler.ets = dummy_past_residuals[:] | |
| if time_step is None: | |
| time_step = scheduler.timesteps[len(scheduler.timesteps) // 2] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| # copy over dummy past residuals | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residual (must be after setting timesteps) | |
| new_scheduler.ets = dummy_past_residuals[:] | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| return sample | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # copy over dummy past residuals (must be done after set_timesteps) | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] | |
| scheduler.ets = dummy_past_residuals[:] | |
| time_step_0 = scheduler.timesteps[5] | |
| time_step_1 = scheduler.timesteps[6] | |
| output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_timesteps(self): | |
| for timesteps in [100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps, time_step=None) | |
| def test_inference_steps(self): | |
| for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): | |
| self.check_over_forward(num_inference_steps=num_inference_steps, time_step=None) | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 2540529) < 10 | |
| class VQDiffusionSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (VQDiffusionScheduler,) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_vec_classes": 4097, | |
| "num_train_timesteps": 100, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def dummy_sample(self, num_vec_classes): | |
| batch_size = 4 | |
| height = 8 | |
| width = 8 | |
| sample = torch.randint(0, num_vec_classes, (batch_size, height * width)) | |
| return sample | |
| def dummy_sample_deter(self): | |
| assert False | |
| def dummy_model(self, num_vec_classes): | |
| def model(sample, t, *args): | |
| batch_size, num_latent_pixels = sample.shape | |
| logits = torch.rand((batch_size, num_vec_classes - 1, num_latent_pixels)) | |
| return_value = F.log_softmax(logits.double(), dim=1).float() | |
| return return_value | |
| return model | |
| def test_timesteps(self): | |
| for timesteps in [2, 5, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_num_vec_classes(self): | |
| for num_vec_classes in [5, 100, 1000, 4000]: | |
| self.check_over_configs(num_vec_classes=num_vec_classes) | |
| def test_time_indices(self): | |
| for t in [0, 50, 99]: | |
| self.check_over_forward(time_step=t) | |
| def test_add_noise_device(self): | |
| pass | |
| class HeunDiscreteSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (HeunDiscreteScheduler,) | |
| num_inference_steps = 10 | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1100, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [10, 50, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "scaled_linear"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_full_loop_no_noise(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| if torch_device in ["cpu", "mps"]: | |
| assert abs(result_sum.item() - 0.1233) < 1e-2 | |
| assert abs(result_mean.item() - 0.0002) < 1e-3 | |
| else: | |
| # CUDA | |
| assert abs(result_sum.item() - 0.1233) < 1e-2 | |
| assert abs(result_mean.item() - 0.0002) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| if torch_device in ["cpu", "mps"]: | |
| assert abs(result_sum.item() - 4.6934e-07) < 1e-2 | |
| assert abs(result_mean.item() - 6.1112e-10) < 1e-3 | |
| else: | |
| # CUDA | |
| assert abs(result_sum.item() - 4.693428650170972e-07) < 1e-2 | |
| assert abs(result_mean.item() - 0.0002) < 1e-3 | |
| def test_full_loop_device(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma | |
| for t in scheduler.timesteps: | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| if str(torch_device).startswith("cpu"): | |
| # The following sum varies between 148 and 156 on mps. Why? | |
| assert abs(result_sum.item() - 0.1233) < 1e-2 | |
| assert abs(result_mean.item() - 0.0002) < 1e-3 | |
| elif str(torch_device).startswith("mps"): | |
| # Larger tolerance on mps | |
| assert abs(result_mean.item() - 0.0002) < 1e-2 | |
| else: | |
| # CUDA | |
| assert abs(result_sum.item() - 0.1233) < 1e-2 | |
| assert abs(result_mean.item() - 0.0002) < 1e-3 | |
| class KDPM2DiscreteSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (KDPM2DiscreteScheduler,) | |
| num_inference_steps = 10 | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1100, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [10, 50, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "scaled_linear"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_full_loop_with_v_prediction(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| if torch_device in ["cpu", "mps"]: | |
| assert abs(result_sum.item() - 4.6934e-07) < 1e-2 | |
| assert abs(result_mean.item() - 6.1112e-10) < 1e-3 | |
| else: | |
| # CUDA | |
| assert abs(result_sum.item() - 4.693428650170972e-07) < 1e-2 | |
| assert abs(result_mean.item() - 0.0002) < 1e-3 | |
| def test_full_loop_no_noise(self): | |
| if torch_device == "mps": | |
| return | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| if torch_device in ["cpu", "mps"]: | |
| assert abs(result_sum.item() - 20.4125) < 1e-2 | |
| assert abs(result_mean.item() - 0.0266) < 1e-3 | |
| else: | |
| # CUDA | |
| assert abs(result_sum.item() - 20.4125) < 1e-2 | |
| assert abs(result_mean.item() - 0.0266) < 1e-3 | |
| def test_full_loop_device(self): | |
| if torch_device == "mps": | |
| return | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma | |
| for t in scheduler.timesteps: | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| if str(torch_device).startswith("cpu"): | |
| # The following sum varies between 148 and 156 on mps. Why? | |
| assert abs(result_sum.item() - 20.4125) < 1e-2 | |
| assert abs(result_mean.item() - 0.0266) < 1e-3 | |
| else: | |
| # CUDA | |
| assert abs(result_sum.item() - 20.4125) < 1e-2 | |
| assert abs(result_mean.item() - 0.0266) < 1e-3 | |
| class DEISMultistepSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (DEISMultistepScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 25),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| "solver_order": 2, | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output, new_output = sample, sample | |
| for t in range(time_step, time_step + scheduler.config.solver_order + 1): | |
| output = scheduler.step(residual, t, output, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| pass | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals (must be after setting timesteps) | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| # copy over dummy past residuals | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residual (must be after setting timesteps) | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def full_loop(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| return sample | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # copy over dummy past residuals (must be done after set_timesteps) | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| time_step_0 = scheduler.timesteps[5] | |
| time_step_1 = scheduler.timesteps[6] | |
| output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_timesteps(self): | |
| for timesteps in [25, 50, 100, 999, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_thresholding(self): | |
| self.check_over_configs(thresholding=False) | |
| for order in [1, 2, 3]: | |
| for solver_type in ["logrho"]: | |
| for threshold in [0.5, 1.0, 2.0]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs( | |
| thresholding=True, | |
| prediction_type=prediction_type, | |
| sample_max_value=threshold, | |
| algorithm_type="deis", | |
| solver_order=order, | |
| solver_type=solver_type, | |
| ) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_solver_order_and_type(self): | |
| for algorithm_type in ["deis"]: | |
| for solver_type in ["logrho"]: | |
| for order in [1, 2, 3]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| sample = self.full_loop( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| assert not torch.isnan(sample).any(), "Samples have nan numbers" | |
| def test_lower_order_final(self): | |
| self.check_over_configs(lower_order_final=True) | |
| self.check_over_configs(lower_order_final=False) | |
| def test_inference_steps(self): | |
| for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: | |
| self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.23916) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| sample = self.full_loop(prediction_type="v_prediction") | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.091) < 1e-3 | |
| def test_fp16_support(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter.half() | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| assert sample.dtype == torch.float16 | |
| class KDPM2AncestralDiscreteSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (KDPM2AncestralDiscreteScheduler,) | |
| num_inference_steps = 10 | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1100, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [10, 50, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_betas(self): | |
| for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]): | |
| self.check_over_configs(beta_start=beta_start, beta_end=beta_end) | |
| def test_schedules(self): | |
| for schedule in ["linear", "scaled_linear"]: | |
| self.check_over_configs(beta_schedule=schedule) | |
| def test_full_loop_no_noise(self): | |
| if torch_device == "mps": | |
| return | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 13849.3877) < 1e-2 | |
| assert abs(result_mean.item() - 18.0331) < 5e-3 | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_full_loop_with_v_prediction(self): | |
| if torch_device == "mps": | |
| return | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(prediction_type="v_prediction") | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter * scheduler.init_noise_sigma | |
| sample = sample.to(torch_device) | |
| generator = torch.manual_seed(0) | |
| for i, t in enumerate(scheduler.timesteps): | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 328.9970) < 1e-2 | |
| assert abs(result_mean.item() - 0.4284) < 1e-3 | |
| def test_full_loop_device(self): | |
| if torch_device == "mps": | |
| return | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(self.num_inference_steps, device=torch_device) | |
| generator = torch.manual_seed(0) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma | |
| for t in scheduler.timesteps: | |
| sample = scheduler.scale_model_input(sample, t) | |
| model_output = model(sample, t) | |
| output = scheduler.step(model_output, t, sample, generator=generator) | |
| sample = output.prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 13849.3818) < 1e-1 | |
| assert abs(result_mean.item() - 18.0331) < 1e-3 | |
| # UnCLIPScheduler is a modified DDPMScheduler with a subset of the configuration. | |
| class UnCLIPSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (UnCLIPScheduler,) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "variance_type": "fixed_small_log", | |
| "clip_sample": True, | |
| "clip_sample_range": 1.0, | |
| "prediction_type": "epsilon", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def test_timesteps(self): | |
| for timesteps in [1, 5, 100, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_variance_type(self): | |
| for variance in ["fixed_small_log", "learned_range"]: | |
| self.check_over_configs(variance_type=variance) | |
| def test_clip_sample(self): | |
| for clip_sample in [True, False]: | |
| self.check_over_configs(clip_sample=clip_sample) | |
| def test_clip_sample_range(self): | |
| for clip_sample_range in [1, 5, 10, 20]: | |
| self.check_over_configs(clip_sample_range=clip_sample_range) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_time_indices(self): | |
| for time_step in [0, 500, 999]: | |
| for prev_timestep in [None, 5, 100, 250, 500, 750]: | |
| if prev_timestep is not None and prev_timestep >= time_step: | |
| continue | |
| self.check_over_forward(time_step=time_step, prev_timestep=prev_timestep) | |
| def test_variance_fixed_small_log(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(variance_type="fixed_small_log") | |
| scheduler = scheduler_class(**scheduler_config) | |
| assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0549625)) < 1e-5 | |
| assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9994987)) < 1e-5 | |
| def test_variance_learned_range(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(variance_type="learned_range") | |
| scheduler = scheduler_class(**scheduler_config) | |
| predicted_variance = 0.5 | |
| assert scheduler._get_variance(1, predicted_variance=predicted_variance) - -10.1712790 < 1e-5 | |
| assert scheduler._get_variance(487, predicted_variance=predicted_variance) - -5.7998052 < 1e-5 | |
| assert scheduler._get_variance(999, predicted_variance=predicted_variance) - -0.0010011 < 1e-5 | |
| def test_full_loop(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| timesteps = scheduler.timesteps | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| generator = torch.manual_seed(0) | |
| for i, t in enumerate(timesteps): | |
| # 1. predict noise residual | |
| residual = model(sample, t) | |
| # 2. predict previous mean of sample x_t-1 | |
| pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample | |
| sample = pred_prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 252.2682495) < 1e-2 | |
| assert abs(result_mean.item() - 0.3284743) < 1e-3 | |
| def test_full_loop_skip_timesteps(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(25) | |
| timesteps = scheduler.timesteps | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| generator = torch.manual_seed(0) | |
| for i, t in enumerate(timesteps): | |
| # 1. predict noise residual | |
| residual = model(sample, t) | |
| if i + 1 == timesteps.shape[0]: | |
| prev_timestep = None | |
| else: | |
| prev_timestep = timesteps[i + 1] | |
| # 2. predict previous mean of sample x_t-1 | |
| pred_prev_sample = scheduler.step( | |
| residual, t, sample, prev_timestep=prev_timestep, generator=generator | |
| ).prev_sample | |
| sample = pred_prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 258.2044983) < 1e-2 | |
| assert abs(result_mean.item() - 0.3362038) < 1e-3 | |
| def test_trained_betas(self): | |
| pass | |
| def test_add_noise_device(self): | |
| pass | |