Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| import numpy as np | |
| import tensorflow as tf | |
| import gradio as gr | |
| from huggingface_hub import from_pretrained_keras | |
| model = from_pretrained_keras("keras-io/CycleGAN", compile=False) | |
| # Define the standard image size. | |
| orig_img_size = (286, 286) | |
| # Size of the random crops to be used during training. | |
| input_img_size = (256, 256, 3) | |
| def normalize_img(img): | |
| img = tf.cast(img, dtype=tf.float32) | |
| # Map values in the range [-1, 1] | |
| return (img / 127.5) - 1.0 | |
| def preprocess_test_image(img): | |
| # Only resizing and normalization for the test images. | |
| img = tf.image.resize(img, [input_img_size[0], input_img_size[1]]) | |
| img = normalize_img(img) | |
| return img | |
| # img_path = './n02381460_1010.jpg' | |
| def generate_img(img_path): | |
| img = tf.io.read_file(img_path) | |
| img = tf.image.decode_png(img) | |
| img = tf.expand_dims(img, axis=0) | |
| img = preprocess_test_image(img) | |
| prediction = model(img, training=False)[0].numpy() | |
| prediction = (prediction * 127.5 + 127.5).astype(np.uint8) | |
| return prediction | |
| image = gr.inputs.Image(type="filepath") | |
| op = gr.outputs.Image(type="numpy") | |
| iface = gr.Interface( | |
| generate_img, | |
| image, | |
| op, | |
| title="CycleGAN", | |
| description='Keras Implementation of CycleGAN model using Horse to Zebra dataset', | |
| article='Author: <a href="https://huggingface.co/anuragshas">Anurag Singh</a>. Based on the keras example from <a href="https://keras.io/examples/generative/cyclegan/">A_K_Nain</a>', | |
| examples=["n02381460_360.jpg", "n02381460_4410.jpg"], | |
| ) | |
| iface.launch(cache_examples=True) | |