Spaces:
Runtime error
Runtime error
upd
Browse files- .gitattributes +1 -0
- app.py +174 -45
- embeddings/{all_filelists.txt → all_filelist.txt} +0 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
embeddings/all_filelists.txt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
embeddings/all_filelists.txt filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
embeddings/all_filelist.txt filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import tempfile
|
| 3 |
import zipfile
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
|
| 6 |
import gradio as gr
|
|
@@ -12,7 +15,7 @@ from loguru import logger
|
|
| 12 |
from pyannote.audio import Inference, Model
|
| 13 |
|
| 14 |
HF_REPO_ID = "litagin/voice-samples-22050"
|
| 15 |
-
|
| 16 |
RESNET34_DIM = 256
|
| 17 |
AUDIO_ZIP_DIR = Path("./audio_files_zipped_by_game_22_050")
|
| 18 |
|
|
@@ -30,7 +33,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 30 |
logger.info(f"Device: {device}")
|
| 31 |
|
| 32 |
logger.info("Loading resnet34 vectors...")
|
| 33 |
-
resnet34_embs = np.load(
|
| 34 |
resnet34_embs_normalized = resnet34_embs / np.linalg.norm(
|
| 35 |
resnet34_embs, axis=1, keepdims=True
|
| 36 |
)
|
|
@@ -41,11 +44,11 @@ inference = Inference(model_resnet34, window="whole")
|
|
| 41 |
inference.to(device)
|
| 42 |
|
| 43 |
logger.info("Loading filelist...")
|
| 44 |
-
with open(
|
| 45 |
files = [line.strip() for line in file]
|
| 46 |
|
| 47 |
|
| 48 |
-
def
|
| 49 |
filepath = Path(files[file_idx])
|
| 50 |
game_name = filepath.parent.parent.name
|
| 51 |
speaker_name = filepath.parent.name
|
|
@@ -54,22 +57,39 @@ def get_speaker_name(file_idx: int):
|
|
| 54 |
|
| 55 |
# スピーカーIDの配列を取得
|
| 56 |
logger.info("Getting speaker ids...")
|
| 57 |
-
all_speaker_set = set([
|
| 58 |
id2speaker = {i: speaker for i, speaker in enumerate(sorted(all_speaker_set))}
|
| 59 |
num_speakers = len(id2speaker)
|
| 60 |
speaker2id = {speaker: i for i, speaker in id2speaker.items()}
|
| 61 |
-
speaker_id_array = np.array(
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
|
| 75 |
def get_zip_archive_path_and_internal_path(file_path: Path) -> tuple[str, str]:
|
|
@@ -77,7 +97,7 @@ def get_zip_archive_path_and_internal_path(file_path: Path) -> tuple[str, str]:
|
|
| 77 |
game_name = file_path.parent.parent.name
|
| 78 |
speaker_name = file_path.parent.name
|
| 79 |
archive_path = AUDIO_ZIP_DIR / f"{game_name}.zip"
|
| 80 |
-
internal_path = f"{speaker_name}/{file_path.name}"
|
| 81 |
return str(archive_path), str(internal_path)
|
| 82 |
|
| 83 |
|
|
@@ -105,7 +125,18 @@ def get_emb(audio_path: Path | str) -> np.ndarray:
|
|
| 105 |
return emb
|
| 106 |
|
| 107 |
|
| 108 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
logger.info("Computing embeddings...")
|
| 110 |
emb = get_emb(audio_path) # ユーザー入力の音声ファイル
|
| 111 |
emb = emb.reshape(1, -1) # (1, dim)
|
|
@@ -121,25 +152,48 @@ def search(audio_path: str):
|
|
| 121 |
top_k = 10
|
| 122 |
top_k_indices = np.argsort(similarities)[::-1][:top_k]
|
| 123 |
top_k_files = [files[file_idx] for file_idx in top_k_indices]
|
|
|
|
| 124 |
top_k_scores = similarities[top_k_indices]
|
|
|
|
| 125 |
logger.info("Fetching audio files...")
|
| 126 |
-
|
|
|
|
| 127 |
|
| 128 |
-
for i, (
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
result.append(
|
| 133 |
gr.Audio(
|
| 134 |
value=(sample_rate, waveform_np),
|
| 135 |
-
label=f"Top {i+1}
|
| 136 |
)
|
| 137 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
logger.success("Audio files fetched.")
|
| 139 |
-
return
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
def get_label(audio_path: str, num_top_classes: int = 10):
|
| 143 |
logger.info("Computing embeddings...")
|
| 144 |
emb = get_emb(audio_path) # ユーザー入力の音声ファイル
|
| 145 |
emb = emb.reshape(1, -1) # (1, dim)
|
|
@@ -158,38 +212,113 @@ def get_label(audio_path: str, num_top_classes: int = 10):
|
|
| 158 |
|
| 159 |
# このキャラクターのトップ10の類似度を選択
|
| 160 |
top_similarities = np.sort(similarities[character_indices])[::-1][
|
| 161 |
-
:
|
| 162 |
]
|
| 163 |
|
| 164 |
# 平均スコアを計算
|
| 165 |
average_score = np.mean(top_similarities)
|
| 166 |
|
| 167 |
# スピーカー名を取得
|
| 168 |
-
|
| 169 |
|
| 170 |
-
speaker_scores[
|
| 171 |
|
| 172 |
# スコアでソートして上位10件を返す
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
)
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
logger.success("Average scores calculated.")
|
| 178 |
-
return
|
|
|
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
with gr.Blocks() as app:
|
| 182 |
-
|
| 183 |
-
with gr.
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
app.launch()
|
|
|
|
| 1 |
+
import json
|
| 2 |
import os
|
| 3 |
+
import pprint
|
| 4 |
import tempfile
|
| 5 |
import zipfile
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
import gradio as gr
|
|
|
|
| 15 |
from pyannote.audio import Inference, Model
|
| 16 |
|
| 17 |
HF_REPO_ID = "litagin/voice-samples-22050"
|
| 18 |
+
EMB_ROOT = Path("./embeddings")
|
| 19 |
RESNET34_DIM = 256
|
| 20 |
AUDIO_ZIP_DIR = Path("./audio_files_zipped_by_game_22_050")
|
| 21 |
|
|
|
|
| 33 |
logger.info(f"Device: {device}")
|
| 34 |
|
| 35 |
logger.info("Loading resnet34 vectors...")
|
| 36 |
+
resnet34_embs = np.load(EMB_ROOT / "all_embs.npy")
|
| 37 |
resnet34_embs_normalized = resnet34_embs / np.linalg.norm(
|
| 38 |
resnet34_embs, axis=1, keepdims=True
|
| 39 |
)
|
|
|
|
| 44 |
inference.to(device)
|
| 45 |
|
| 46 |
logger.info("Loading filelist...")
|
| 47 |
+
with open(EMB_ROOT / "all_filelist.txt", "r", encoding="utf-8") as file:
|
| 48 |
files = [line.strip() for line in file]
|
| 49 |
|
| 50 |
|
| 51 |
+
def get_speaker_key(file_idx: int):
|
| 52 |
filepath = Path(files[file_idx])
|
| 53 |
game_name = filepath.parent.parent.name
|
| 54 |
speaker_name = filepath.parent.name
|
|
|
|
| 57 |
|
| 58 |
# スピーカーIDの配列を取得
|
| 59 |
logger.info("Getting speaker ids...")
|
| 60 |
+
all_speaker_set = set([get_speaker_key(i) for i in range(len(files))])
|
| 61 |
id2speaker = {i: speaker for i, speaker in enumerate(sorted(all_speaker_set))}
|
| 62 |
num_speakers = len(id2speaker)
|
| 63 |
speaker2id = {speaker: i for i, speaker in id2speaker.items()}
|
| 64 |
+
speaker_id_array = np.array([speaker2id[get_speaker_key(i)] for i in range(len(files))])
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@dataclass
|
| 68 |
+
class GameInfo:
|
| 69 |
+
company: str
|
| 70 |
+
name: str
|
| 71 |
+
url: str
|
| 72 |
|
| 73 |
|
| 74 |
+
logger.info("Loading game dictionary...")
|
| 75 |
+
"""
|
| 76 |
+
[
|
| 77 |
+
{
|
| 78 |
+
"key": "Aino+Links_Sousaku_Kanojo_no_Ren'ai_Koushiki",
|
| 79 |
+
"company": "Aino+Links",
|
| 80 |
+
"name": "創作彼女の恋愛公式",
|
| 81 |
+
"url": "http://ainolinks.com/"
|
| 82 |
+
},
|
| 83 |
+
...
|
| 84 |
+
]
|
| 85 |
+
"""
|
| 86 |
+
with open("game_info.json", "r", encoding="utf-8") as file:
|
| 87 |
+
game_info = json.load(file)
|
| 88 |
+
|
| 89 |
+
game_dict = {
|
| 90 |
+
game["key"]: GameInfo(company=game["company"], name=game["name"], url=game["url"])
|
| 91 |
+
for game in game_info
|
| 92 |
+
}
|
| 93 |
|
| 94 |
|
| 95 |
def get_zip_archive_path_and_internal_path(file_path: Path) -> tuple[str, str]:
|
|
|
|
| 97 |
game_name = file_path.parent.parent.name
|
| 98 |
speaker_name = file_path.parent.name
|
| 99 |
archive_path = AUDIO_ZIP_DIR / f"{game_name}.zip"
|
| 100 |
+
internal_path = f"{speaker_name}/{file_path.name}"
|
| 101 |
return str(archive_path), str(internal_path)
|
| 102 |
|
| 103 |
|
|
|
|
| 125 |
return emb
|
| 126 |
|
| 127 |
|
| 128 |
+
def search_audio_files(audio_path: str):
|
| 129 |
+
# Check audio duration, require < 30s
|
| 130 |
+
logger.info(f"Getting duration of {audio_path}...")
|
| 131 |
+
waveform, sample_rate = librosa.load(audio_path, sr=None)
|
| 132 |
+
duration = librosa.get_duration(y=waveform, sr=sample_rate)
|
| 133 |
+
logger.info(f"Duration: {duration:.2f}s")
|
| 134 |
+
if duration > 30:
|
| 135 |
+
logger.error(f"Duration is too long: {duration:.2f}s")
|
| 136 |
+
return [
|
| 137 |
+
f"音声ファイルは30秒以下である必要があります。現在のファイルの長さ: {duration:.2f}s"
|
| 138 |
+
] + [None] * 20
|
| 139 |
+
|
| 140 |
logger.info("Computing embeddings...")
|
| 141 |
emb = get_emb(audio_path) # ユーザー入力の音声ファイル
|
| 142 |
emb = emb.reshape(1, -1) # (1, dim)
|
|
|
|
| 152 |
top_k = 10
|
| 153 |
top_k_indices = np.argsort(similarities)[::-1][:top_k]
|
| 154 |
top_k_files = [files[file_idx] for file_idx in top_k_indices]
|
| 155 |
+
logger.info(f"Top {top_k} files:\n{pprint.pformat(top_k_files)}")
|
| 156 |
top_k_scores = similarities[top_k_indices]
|
| 157 |
+
logger.info(f"Top {top_k} scores:\n{pprint.pformat(top_k_scores)}")
|
| 158 |
logger.info("Fetching audio files...")
|
| 159 |
+
audio_result = []
|
| 160 |
+
info_result = []
|
| 161 |
|
| 162 |
+
for i, (file_idx, score) in enumerate(zip(top_k_indices, top_k_scores)):
|
| 163 |
+
file_path = Path(files[file_idx])
|
| 164 |
+
waveform_np, sample_rate = load_audio_from_zip(file_path)
|
| 165 |
+
audio_result.append(
|
|
|
|
| 166 |
gr.Audio(
|
| 167 |
value=(sample_rate, waveform_np),
|
| 168 |
+
label=f"Top {i+1} ({score:.4f})",
|
| 169 |
)
|
| 170 |
)
|
| 171 |
+
game_key = file_path.parent.parent.name
|
| 172 |
+
speaker_name = file_path.parent.name
|
| 173 |
+
game = game_dict[game_key]
|
| 174 |
+
game_info_md = f"""
|
| 175 |
+
## {i+1}位 (スコア{score:.4f})
|
| 176 |
+
- ゲーム名: **{game.name}** ({game.company})
|
| 177 |
+
- 公式サイト: {game.url}
|
| 178 |
+
- キャラクター名: **{speaker_name}**"""
|
| 179 |
+
info_result.append(gr.Markdown(game_info_md))
|
| 180 |
logger.success("Audio files fetched.")
|
| 181 |
+
return ["成功"] + info_result + audio_result
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def get_label(audio_path: str, num_top_classes_to_use: int = 10):
|
| 185 |
+
# Check audio duration, require < 30s
|
| 186 |
+
logger.info(f"Getting duration of {audio_path}...")
|
| 187 |
+
waveform, sample_rate = librosa.load(audio_path, sr=None)
|
| 188 |
+
duration = librosa.get_duration(y=waveform, sr=sample_rate)
|
| 189 |
+
logger.info(f"Duration: {duration:.2f}s")
|
| 190 |
+
if duration > 30:
|
| 191 |
+
logger.error(f"Duration is too long: {duration:.2f}s")
|
| 192 |
+
return (
|
| 193 |
+
f"音声ファイルは30秒以下である必要があります。現在のファイルの長さ: {duration:.2f}s",
|
| 194 |
+
None,
|
| 195 |
+
)
|
| 196 |
|
|
|
|
| 197 |
logger.info("Computing embeddings...")
|
| 198 |
emb = get_emb(audio_path) # ユーザー入力の音声ファイル
|
| 199 |
emb = emb.reshape(1, -1) # (1, dim)
|
|
|
|
| 212 |
|
| 213 |
# このキャラクターのトップ10の類似度を選択
|
| 214 |
top_similarities = np.sort(similarities[character_indices])[::-1][
|
| 215 |
+
:num_top_classes_to_use
|
| 216 |
]
|
| 217 |
|
| 218 |
# 平均スコアを計算
|
| 219 |
average_score = np.mean(top_similarities)
|
| 220 |
|
| 221 |
# スピーカー名を取得
|
| 222 |
+
speaker_key = id2speaker[character_id]
|
| 223 |
|
| 224 |
+
speaker_scores[speaker_key] = average_score
|
| 225 |
|
| 226 |
# スコアでソートして上位10件を返す
|
| 227 |
+
sorted_scores_list = sorted(
|
| 228 |
+
speaker_scores.items(), key=lambda x: x[1], reverse=True
|
| 229 |
+
)
|
| 230 |
+
sorted_scores_list = sorted_scores_list[:10]
|
| 231 |
+
logger.success("Average scores calculated.")
|
| 232 |
+
logger.info(
|
| 233 |
+
f"Top {num_top_classes_to_use} speakers:\n{pprint.pformat(sorted_scores_list)}"
|
| 234 |
)
|
| 235 |
|
| 236 |
+
results = []
|
| 237 |
+
for i, (speaker_key, score) in enumerate(sorted_scores_list):
|
| 238 |
+
game_key, speaker_name = speaker_key.split("/")
|
| 239 |
+
result_md = f"""
|
| 240 |
+
## {i+1}位 (スコア{score:.4f})
|
| 241 |
+
- ゲーム名: **{game_dict[game_key].name}** ({game_dict[game_key].company})
|
| 242 |
+
- 公式サイト: {game_dict[game_key].url}
|
| 243 |
+
- キャラクター名: {speaker_name}
|
| 244 |
+
---"""
|
| 245 |
+
results.append(result_md)
|
| 246 |
+
|
| 247 |
+
all_result_md = "\n\n".join(results)
|
| 248 |
+
|
| 249 |
logger.success("Average scores calculated.")
|
| 250 |
+
return "成功", all_result_md
|
| 251 |
+
|
| 252 |
|
| 253 |
+
def make_game_info_md(game_key: str) -> str:
|
| 254 |
+
game = game_dict[game_key]
|
| 255 |
+
return f"[**{game.name}** ({game.company})]({game.url})"
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def make_speaker_info_md(game_key: str, speaker_name: str) -> str:
|
| 259 |
+
game = game_dict[game_key]
|
| 260 |
+
return f"[{game.name} ({game.company})]({game.url})\n{speaker_name}"
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
initial_md = """
|
| 264 |
+
# ギャルゲー似た声検索
|
| 265 |
+
|
| 266 |
+
- 与えられた音声に対して、声が似ているような日本のギャルゲー(ビジュアルノベル・エロゲー)の音声を検索するアプリです
|
| 267 |
+
- 「この声と似たキャラクターが出ているギャルゲーは?」「この音声AIの声に聞き覚えあるけど、学習元は誰なのかな?」といった疑問の参考になるかもしれません
|
| 268 |
+
- 次ができます:
|
| 269 |
+
- セリフ単位でのTop 10の音声のサンプル表示
|
| 270 |
+
- キャラクター単位でのTop 10のキャラクター表示
|
| 271 |
+
- ゲームの公式サイトへのリンクもありますが、**18歳未満の方はリンク先へのアクセスを控えてください**
|
| 272 |
+
- 全てのゲームや、その中の全ての音声が網羅されているわけではありません(データについては下記詳細を参照)
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
details_md = """
|
| 276 |
+
|
| 277 |
+
## 音声データ
|
| 278 |
+
|
| 279 |
+
- 音声データは全て [OOPPEENN/Galgame_Dataset](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset) から取得
|
| 280 |
+
- 音声ファイル処理: 各キャラクターについて次を行う
|
| 281 |
+
- 総ファイル数が100未満の場合はモブキャラとして除外
|
| 282 |
+
- 「2秒以上20秒未満」の音声ファイルのうち、時系列的に最初の100ファイルに加え、ランダムに最大200ファイル、合計最大300ファイルを選択
|
| 283 |
+
- 22050Hz oggでリサンプリング
|
| 284 |
+
|
| 285 |
+
## 音声ファイル同士の類似度計算
|
| 286 |
+
- 話者埋め込み: [pyannote/wespeaker-voxceleb-resnet34-LM](https://huggingface.co/pyannote/wespeaker-voxceleb-resnet34-LM) の256次元の話者埋め込み
|
| 287 |
+
- 類似度計算: 2つの音声ファイルの話者埋め込みベクトルのコサイン類似度
|
| 288 |
+
|
| 289 |
+
## キャラクター検索
|
| 290 |
+
- 与えられた音声に対して、全ての音声ファイルとの類似度を計算
|
| 291 |
+
- 各キャラクターについて、類似度の高い10ファイルの平均類似度を計算し、スコアとする
|
| 292 |
+
- そのスコアでソートして上位10キャラクターを表示
|
| 293 |
+
"""
|
| 294 |
|
| 295 |
with gr.Blocks() as app:
|
| 296 |
+
gr.Markdown(initial_md)
|
| 297 |
+
with gr.Accordion(label="詳細", open=False):
|
| 298 |
+
gr.Markdown(details_md)
|
| 299 |
+
input_audio = gr.Audio(type="filepath", label="音声ファイルを入力")
|
| 300 |
+
with gr.Tab(label="セリフ音声検索"):
|
| 301 |
+
btn_audio = gr.Button("似ているセリフ音声を検索")
|
| 302 |
+
info_audio = gr.Textbox(label="情報")
|
| 303 |
+
num_candidates = 10
|
| 304 |
+
audio_components = []
|
| 305 |
+
game_info_components = []
|
| 306 |
+
for i in range(num_candidates):
|
| 307 |
+
with gr.Row(variant="panel"):
|
| 308 |
+
game_info_components.append(gr.Markdown(label=f"Top {i+1}"))
|
| 309 |
+
audio_components.append(gr.Audio(label=f"Top {i+1}"))
|
| 310 |
+
with gr.Tab(label="キャラクター検索"):
|
| 311 |
+
btn_character = gr.Button("似ているキャラクターを検索")
|
| 312 |
+
info_character = gr.Textbox(label="情報")
|
| 313 |
+
result_character = gr.Markdown("ここに結果が表示されます")
|
| 314 |
+
|
| 315 |
+
btn_audio.click(
|
| 316 |
+
search_audio_files,
|
| 317 |
+
inputs=[input_audio],
|
| 318 |
+
outputs=[info_audio] + game_info_components + audio_components,
|
| 319 |
+
)
|
| 320 |
+
btn_character.click(
|
| 321 |
+
get_label, inputs=[input_audio], outputs=[info_character, result_character]
|
| 322 |
+
)
|
| 323 |
|
| 324 |
app.launch()
|
embeddings/{all_filelists.txt → all_filelist.txt}
RENAMED
|
File without changes
|