Spaces:
Running
on
Zero
Running
on
Zero
Delete onnx_export.py
Browse files- onnx_export.py +0 -334
onnx_export.py
DELETED
|
@@ -1,334 +0,0 @@
|
|
| 1 |
-
from module.models_onnx import SynthesizerTrn, symbols
|
| 2 |
-
from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule
|
| 3 |
-
import torch
|
| 4 |
-
import torchaudio
|
| 5 |
-
from torch import nn
|
| 6 |
-
from feature_extractor import cnhubert
|
| 7 |
-
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
|
| 8 |
-
cnhubert.cnhubert_base_path=cnhubert_base_path
|
| 9 |
-
ssl_model = cnhubert.get_model()
|
| 10 |
-
from text import cleaned_text_to_sequence
|
| 11 |
-
import soundfile
|
| 12 |
-
from tools.my_utils import load_audio
|
| 13 |
-
import os
|
| 14 |
-
import json
|
| 15 |
-
|
| 16 |
-
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
| 17 |
-
hann_window = torch.hann_window(win_size).to(
|
| 18 |
-
dtype=y.dtype, device=y.device
|
| 19 |
-
)
|
| 20 |
-
y = torch.nn.functional.pad(
|
| 21 |
-
y.unsqueeze(1),
|
| 22 |
-
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
| 23 |
-
mode="reflect",
|
| 24 |
-
)
|
| 25 |
-
y = y.squeeze(1)
|
| 26 |
-
spec = torch.stft(
|
| 27 |
-
y,
|
| 28 |
-
n_fft,
|
| 29 |
-
hop_length=hop_size,
|
| 30 |
-
win_length=win_size,
|
| 31 |
-
window=hann_window,
|
| 32 |
-
center=center,
|
| 33 |
-
pad_mode="reflect",
|
| 34 |
-
normalized=False,
|
| 35 |
-
onesided=True,
|
| 36 |
-
return_complex=False,
|
| 37 |
-
)
|
| 38 |
-
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
| 39 |
-
return spec
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class DictToAttrRecursive(dict):
|
| 43 |
-
def __init__(self, input_dict):
|
| 44 |
-
super().__init__(input_dict)
|
| 45 |
-
for key, value in input_dict.items():
|
| 46 |
-
if isinstance(value, dict):
|
| 47 |
-
value = DictToAttrRecursive(value)
|
| 48 |
-
self[key] = value
|
| 49 |
-
setattr(self, key, value)
|
| 50 |
-
|
| 51 |
-
def __getattr__(self, item):
|
| 52 |
-
try:
|
| 53 |
-
return self[item]
|
| 54 |
-
except KeyError:
|
| 55 |
-
raise AttributeError(f"Attribute {item} not found")
|
| 56 |
-
|
| 57 |
-
def __setattr__(self, key, value):
|
| 58 |
-
if isinstance(value, dict):
|
| 59 |
-
value = DictToAttrRecursive(value)
|
| 60 |
-
super(DictToAttrRecursive, self).__setitem__(key, value)
|
| 61 |
-
super().__setattr__(key, value)
|
| 62 |
-
|
| 63 |
-
def __delattr__(self, item):
|
| 64 |
-
try:
|
| 65 |
-
del self[item]
|
| 66 |
-
except KeyError:
|
| 67 |
-
raise AttributeError(f"Attribute {item} not found")
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
class T2SEncoder(nn.Module):
|
| 71 |
-
def __init__(self, t2s, vits):
|
| 72 |
-
super().__init__()
|
| 73 |
-
self.encoder = t2s.onnx_encoder
|
| 74 |
-
self.vits = vits
|
| 75 |
-
|
| 76 |
-
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
|
| 77 |
-
codes = self.vits.extract_latent(ssl_content)
|
| 78 |
-
prompt_semantic = codes[0, 0]
|
| 79 |
-
bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1)
|
| 80 |
-
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
|
| 81 |
-
bert = bert.unsqueeze(0)
|
| 82 |
-
prompt = prompt_semantic.unsqueeze(0)
|
| 83 |
-
return self.encoder(all_phoneme_ids, bert), prompt
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
class T2SModel(nn.Module):
|
| 87 |
-
def __init__(self, t2s_path, vits_model):
|
| 88 |
-
super().__init__()
|
| 89 |
-
dict_s1 = torch.load(t2s_path, map_location="cpu")
|
| 90 |
-
self.config = dict_s1["config"]
|
| 91 |
-
self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False)
|
| 92 |
-
self.t2s_model.load_state_dict(dict_s1["weight"])
|
| 93 |
-
self.t2s_model.eval()
|
| 94 |
-
self.vits_model = vits_model.vq_model
|
| 95 |
-
self.hz = 50
|
| 96 |
-
self.max_sec = self.config["data"]["max_sec"]
|
| 97 |
-
self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]])
|
| 98 |
-
self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
|
| 99 |
-
self.t2s_model = self.t2s_model.model
|
| 100 |
-
self.t2s_model.init_onnx()
|
| 101 |
-
self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model)
|
| 102 |
-
self.first_stage_decoder = self.t2s_model.first_stage_decoder
|
| 103 |
-
self.stage_decoder = self.t2s_model.stage_decoder
|
| 104 |
-
#self.t2s_model = torch.jit.script(self.t2s_model)
|
| 105 |
-
|
| 106 |
-
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
|
| 107 |
-
early_stop_num = self.t2s_model.early_stop_num
|
| 108 |
-
|
| 109 |
-
#[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
|
| 110 |
-
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
| 111 |
-
|
| 112 |
-
prefix_len = prompts.shape[1]
|
| 113 |
-
|
| 114 |
-
#[1,N,512] [1,N]
|
| 115 |
-
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
|
| 116 |
-
|
| 117 |
-
stop = False
|
| 118 |
-
for idx in range(1, 1500):
|
| 119 |
-
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
|
| 120 |
-
enco = self.stage_decoder(y, k, v, y_emb, x_example)
|
| 121 |
-
y, k, v, y_emb, logits, samples = enco
|
| 122 |
-
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
| 123 |
-
stop = True
|
| 124 |
-
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
|
| 125 |
-
stop = True
|
| 126 |
-
if stop:
|
| 127 |
-
break
|
| 128 |
-
y[0, -1] = 0
|
| 129 |
-
|
| 130 |
-
return y[:, -idx:].unsqueeze(0)
|
| 131 |
-
|
| 132 |
-
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False):
|
| 133 |
-
#self.onnx_encoder = torch.jit.script(self.onnx_encoder)
|
| 134 |
-
if dynamo:
|
| 135 |
-
export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
|
| 136 |
-
onnx_encoder_export_output = torch.onnx.dynamo_export(
|
| 137 |
-
self.onnx_encoder,
|
| 138 |
-
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
|
| 139 |
-
export_options=export_options
|
| 140 |
-
)
|
| 141 |
-
onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx")
|
| 142 |
-
return
|
| 143 |
-
|
| 144 |
-
torch.onnx.export(
|
| 145 |
-
self.onnx_encoder,
|
| 146 |
-
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
|
| 147 |
-
f"onnx/{project_name}/{project_name}_t2s_encoder.onnx",
|
| 148 |
-
input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"],
|
| 149 |
-
output_names=["x", "prompts"],
|
| 150 |
-
dynamic_axes={
|
| 151 |
-
"ref_seq": {1 : "ref_length"},
|
| 152 |
-
"text_seq": {1 : "text_length"},
|
| 153 |
-
"ref_bert": {0 : "ref_length"},
|
| 154 |
-
"text_bert": {0 : "text_length"},
|
| 155 |
-
"ssl_content": {2 : "ssl_length"},
|
| 156 |
-
},
|
| 157 |
-
opset_version=16
|
| 158 |
-
)
|
| 159 |
-
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
| 160 |
-
|
| 161 |
-
torch.onnx.export(
|
| 162 |
-
self.first_stage_decoder,
|
| 163 |
-
(x, prompts),
|
| 164 |
-
f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx",
|
| 165 |
-
input_names=["x", "prompts"],
|
| 166 |
-
output_names=["y", "k", "v", "y_emb", "x_example"],
|
| 167 |
-
dynamic_axes={
|
| 168 |
-
"x": {1 : "x_length"},
|
| 169 |
-
"prompts": {1 : "prompts_length"},
|
| 170 |
-
},
|
| 171 |
-
verbose=False,
|
| 172 |
-
opset_version=16
|
| 173 |
-
)
|
| 174 |
-
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
|
| 175 |
-
|
| 176 |
-
torch.onnx.export(
|
| 177 |
-
self.stage_decoder,
|
| 178 |
-
(y, k, v, y_emb, x_example),
|
| 179 |
-
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
|
| 180 |
-
input_names=["iy", "ik", "iv", "iy_emb", "ix_example"],
|
| 181 |
-
output_names=["y", "k", "v", "y_emb", "logits", "samples"],
|
| 182 |
-
dynamic_axes={
|
| 183 |
-
"iy": {1 : "iy_length"},
|
| 184 |
-
"ik": {1 : "ik_length"},
|
| 185 |
-
"iv": {1 : "iv_length"},
|
| 186 |
-
"iy_emb": {1 : "iy_emb_length"},
|
| 187 |
-
"ix_example": {1 : "ix_example_length"},
|
| 188 |
-
},
|
| 189 |
-
verbose=False,
|
| 190 |
-
opset_version=16
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
class VitsModel(nn.Module):
|
| 195 |
-
def __init__(self, vits_path):
|
| 196 |
-
super().__init__()
|
| 197 |
-
dict_s2 = torch.load(vits_path,map_location="cpu")
|
| 198 |
-
self.hps = dict_s2["config"]
|
| 199 |
-
self.hps = DictToAttrRecursive(self.hps)
|
| 200 |
-
self.hps.model.semantic_frame_rate = "25hz"
|
| 201 |
-
self.vq_model = SynthesizerTrn(
|
| 202 |
-
self.hps.data.filter_length // 2 + 1,
|
| 203 |
-
self.hps.train.segment_size // self.hps.data.hop_length,
|
| 204 |
-
n_speakers=self.hps.data.n_speakers,
|
| 205 |
-
**self.hps.model
|
| 206 |
-
)
|
| 207 |
-
self.vq_model.eval()
|
| 208 |
-
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
| 209 |
-
|
| 210 |
-
def forward(self, text_seq, pred_semantic, ref_audio):
|
| 211 |
-
refer = spectrogram_torch(
|
| 212 |
-
ref_audio,
|
| 213 |
-
self.hps.data.filter_length,
|
| 214 |
-
self.hps.data.sampling_rate,
|
| 215 |
-
self.hps.data.hop_length,
|
| 216 |
-
self.hps.data.win_length,
|
| 217 |
-
center=False
|
| 218 |
-
)
|
| 219 |
-
return self.vq_model(pred_semantic, text_seq, refer)[0, 0]
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
class GptSoVits(nn.Module):
|
| 223 |
-
def __init__(self, vits, t2s):
|
| 224 |
-
super().__init__()
|
| 225 |
-
self.vits = vits
|
| 226 |
-
self.t2s = t2s
|
| 227 |
-
|
| 228 |
-
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, debug=False):
|
| 229 |
-
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
| 230 |
-
audio = self.vits(text_seq, pred_semantic, ref_audio)
|
| 231 |
-
if debug:
|
| 232 |
-
import onnxruntime
|
| 233 |
-
sess = onnxruntime.InferenceSession("onnx/koharu/koharu_vits.onnx", providers=["CPU"])
|
| 234 |
-
audio1 = sess.run(None, {
|
| 235 |
-
"text_seq" : text_seq.detach().cpu().numpy(),
|
| 236 |
-
"pred_semantic" : pred_semantic.detach().cpu().numpy(),
|
| 237 |
-
"ref_audio" : ref_audio.detach().cpu().numpy()
|
| 238 |
-
})
|
| 239 |
-
return audio, audio1
|
| 240 |
-
return audio
|
| 241 |
-
|
| 242 |
-
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name):
|
| 243 |
-
self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name)
|
| 244 |
-
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
| 245 |
-
torch.onnx.export(
|
| 246 |
-
self.vits,
|
| 247 |
-
(text_seq, pred_semantic, ref_audio),
|
| 248 |
-
f"onnx/{project_name}/{project_name}_vits.onnx",
|
| 249 |
-
input_names=["text_seq", "pred_semantic", "ref_audio"],
|
| 250 |
-
output_names=["audio"],
|
| 251 |
-
dynamic_axes={
|
| 252 |
-
"text_seq": {1 : "text_length"},
|
| 253 |
-
"pred_semantic": {2 : "pred_length"},
|
| 254 |
-
"ref_audio": {1 : "audio_length"},
|
| 255 |
-
},
|
| 256 |
-
opset_version=17,
|
| 257 |
-
verbose=False
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
class SSLModel(nn.Module):
|
| 262 |
-
def __init__(self):
|
| 263 |
-
super().__init__()
|
| 264 |
-
self.ssl = ssl_model
|
| 265 |
-
|
| 266 |
-
def forward(self, ref_audio_16k):
|
| 267 |
-
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
def export(vits_path, gpt_path, project_name):
|
| 271 |
-
vits = VitsModel(vits_path)
|
| 272 |
-
gpt = T2SModel(gpt_path, vits)
|
| 273 |
-
gpt_sovits = GptSoVits(vits, gpt)
|
| 274 |
-
ssl = SSLModel()
|
| 275 |
-
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
|
| 276 |
-
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
|
| 277 |
-
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
|
| 278 |
-
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
|
| 279 |
-
ref_audio = torch.randn((1, 48000 * 5)).float()
|
| 280 |
-
# ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float()
|
| 281 |
-
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()
|
| 282 |
-
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float()
|
| 283 |
-
|
| 284 |
-
try:
|
| 285 |
-
os.mkdir(f"onnx/{project_name}")
|
| 286 |
-
except:
|
| 287 |
-
pass
|
| 288 |
-
|
| 289 |
-
ssl_content = ssl(ref_audio_16k).float()
|
| 290 |
-
|
| 291 |
-
debug = False
|
| 292 |
-
|
| 293 |
-
if debug:
|
| 294 |
-
a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug)
|
| 295 |
-
soundfile.write("out1.wav", a.cpu().detach().numpy(), vits.hps.data.sampling_rate)
|
| 296 |
-
soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate)
|
| 297 |
-
return
|
| 298 |
-
|
| 299 |
-
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
|
| 300 |
-
|
| 301 |
-
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|
| 302 |
-
|
| 303 |
-
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
|
| 304 |
-
|
| 305 |
-
MoeVSConf = {
|
| 306 |
-
"Folder" : f"{project_name}",
|
| 307 |
-
"Name" : f"{project_name}",
|
| 308 |
-
"Type" : "GPT-SoVits",
|
| 309 |
-
"Rate" : vits.hps.data.sampling_rate,
|
| 310 |
-
"NumLayers": gpt.t2s_model.num_layers,
|
| 311 |
-
"EmbeddingDim": gpt.t2s_model.embedding_dim,
|
| 312 |
-
"Dict": "BasicDict",
|
| 313 |
-
"BertPath": "chinese-roberta-wwm-ext-large",
|
| 314 |
-
"Symbol": symbols,
|
| 315 |
-
"AddBlank": False
|
| 316 |
-
}
|
| 317 |
-
|
| 318 |
-
MoeVSConfJson = json.dumps(MoeVSConf)
|
| 319 |
-
with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile:
|
| 320 |
-
json.dump(MoeVSConf, MoeVsConfFile, indent = 4)
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
if __name__ == "__main__":
|
| 324 |
-
try:
|
| 325 |
-
os.mkdir("onnx")
|
| 326 |
-
except:
|
| 327 |
-
pass
|
| 328 |
-
|
| 329 |
-
gpt_path = "GPT_weights/nahida-e25.ckpt"
|
| 330 |
-
vits_path = "SoVITS_weights/nahida_e30_s3930.pth"
|
| 331 |
-
exp_path = "nahida"
|
| 332 |
-
export(vits_path, gpt_path, exp_path)
|
| 333 |
-
|
| 334 |
-
# soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|