Spaces:
Sleeping
Sleeping
| import os, gradio as gr, torch, logging | |
| from langchain_chroma import Chroma | |
| from langchain_community.embeddings import HuggingFaceEmbeddings # ← 新路径 | |
| from langchain_community.llms import HuggingFacePipeline | |
| from langchain.chains import RetrievalQA | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| logging.basicConfig(level=logging.INFO) | |
| VECTOR_STORE_DIR = "./vector_store" | |
| MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall" | |
| EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
| # ─── 1. 加载 LLM ─── | |
| print("🔧 加载生成模型…") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| device_map="auto", | |
| ) | |
| gen_pipe = pipeline( | |
| task="text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=256, | |
| temperature=0.5, | |
| top_p=0.9, | |
| do_sample=True, | |
| ) | |
| llm = HuggingFacePipeline(pipeline=gen_pipe) | |
| # ─── 2. 加载向量库 ─── | |
| print("📚 加载向量库…") | |
| embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) | |
| vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings) | |
| # ─── 3. 构建 RAG 问答链 ─── | |
| retriever = vectordb.as_retriever(search_kwargs={"k": 3}) | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| return_source_documents=True, | |
| ) | |
| # ─── 4. 业务函数 ─── | |
| def qa_fn(query: str): | |
| if not query.strip(): | |
| return "❌ 请输入问题内容。" | |
| result = qa_chain({"query": query}) | |
| answer = result["result"] | |
| sources = result.get("source_documents", []) | |
| sources_text = "\n\n".join( | |
| [f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)] | |
| ) | |
| return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}" | |
| # ─── 5. Gradio UI ─── | |
| with gr.Blocks(title="数学知识问答助手") as demo: | |
| gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”") | |
| with gr.Row(): | |
| query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2) | |
| answer = gr.Textbox(label="回答", lines=15) | |
| gr.Button("提问").click(qa_fn, inputs=query, outputs=answer) | |
| gr.Markdown("---\n模型:gpt2-chinese-cluecorpus + Chroma RAG\nPowered by Hugging Face Spaces") | |
| if __name__ == "__main__": | |
| demo.launch() | |