Delete vector_build/build_vector_store.py
Browse files
vector_build/build_vector_store.py
DELETED
|
@@ -1,47 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 4 |
-
from langchain_community.vectorstores import Chroma
|
| 5 |
-
|
| 6 |
-
# 1. 设置路径
|
| 7 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # 当前脚本所在路径
|
| 8 |
-
PERSIST_DIR = os.path.abspath(os.path.join(BASE_DIR, "../vector_store")) # 向量库存储路径
|
| 9 |
-
SOURCE_DIR = BASE_DIR # 你的 .md 文件就在当前 vector_build/ 目录下
|
| 10 |
-
|
| 11 |
-
# 2. 加载 Embedding 模型
|
| 12 |
-
embed_model = HuggingFaceEmbeddings(
|
| 13 |
-
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
# 3. 加载 Markdown 文件 & 切分为小段
|
| 17 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 18 |
-
chunk_size=500, chunk_overlap=50
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
docs = []
|
| 22 |
-
for fname in os.listdir(SOURCE_DIR):
|
| 23 |
-
if fname.endswith(".md"):
|
| 24 |
-
with open(os.path.join(SOURCE_DIR, fname), "r", encoding="utf-8") as f:
|
| 25 |
-
raw_text = f.read()
|
| 26 |
-
chunks = text_splitter.split_text(raw_text)
|
| 27 |
-
for chunk in chunks:
|
| 28 |
-
docs.append({
|
| 29 |
-
"text": chunk,
|
| 30 |
-
"source": fname
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
print(f"🐣 共切分出 {len(docs)} 个文本块,准备向量化...")
|
| 34 |
-
|
| 35 |
-
# 4. 创建 Chroma 向量库
|
| 36 |
-
texts = [d["text"] for d in docs]
|
| 37 |
-
metas = [{"source": d["source"]} for d in docs]
|
| 38 |
-
|
| 39 |
-
vectordb = Chroma.from_texts(
|
| 40 |
-
texts=texts,
|
| 41 |
-
embedding=embed_model,
|
| 42 |
-
metadatas=metas,
|
| 43 |
-
persist_directory=PERSIST_DIR
|
| 44 |
-
)
|
| 45 |
-
vectordb.persist()
|
| 46 |
-
|
| 47 |
-
print(f"🎉 向量库生成完毕,已保存在:{PERSIST_DIR}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|