Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,131 +1,56 @@
|
|
| 1 |
-
import
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
-
from
|
| 5 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 6 |
-
from langchain_community.llms import HuggingFacePipeline
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
-
from transformers import
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
)
|
| 16 |
-
vector_store = Chroma(
|
| 17 |
-
persist_directory="vector_store",
|
| 18 |
-
embedding_function=embedding_model,
|
| 19 |
-
)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
-
model_id,
|
| 26 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 27 |
-
device_map="auto",
|
| 28 |
-
)
|
| 29 |
-
gen_pipe = pipeline(
|
| 30 |
-
task="text-generation",
|
| 31 |
-
model=model,
|
| 32 |
-
tokenizer=tokenizer,
|
| 33 |
-
max_new_tokens=256,
|
| 34 |
-
temperature=0.5,
|
| 35 |
-
top_p=0.9,
|
| 36 |
-
do_sample=True,
|
| 37 |
)
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
| 41 |
-
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
| 42 |
qa_chain = RetrievalQA.from_chain_type(
|
| 43 |
llm=llm,
|
| 44 |
chain_type="stuff",
|
| 45 |
retriever=retriever,
|
|
|
|
| 46 |
)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
return "⚠️ 请输入学习问题,例如:什么是定积分?"
|
| 52 |
try:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def generate_outline(topic: str):
|
| 59 |
-
if not topic.strip():
|
| 60 |
-
yield "⚠️ 请输入章节或主题,例如:高等数学 第六章 定积分", ""
|
| 61 |
-
return
|
| 62 |
-
|
| 63 |
-
yield "⌛ 正在检索/生成,请稍候…", ""
|
| 64 |
-
|
| 65 |
-
try:
|
| 66 |
-
docs = retriever.get_relevant_documents(topic)
|
| 67 |
-
if not docs:
|
| 68 |
-
yield "⚠️ 没有找到相关内容,请换个关键词试试。", ""
|
| 69 |
-
return
|
| 70 |
-
|
| 71 |
-
snippet = "\n".join(d.page_content for d in docs)
|
| 72 |
-
prompt = (
|
| 73 |
-
f"根据以下内容,为“{topic}”生成大学本科层次的结构化学习大纲,格式示例:\n"
|
| 74 |
-
f"一、章节标题\n 1. 节标题\n (1)要点描述\n...\n\n"
|
| 75 |
-
f"文档内容:\n{snippet}\n\n学习大纲:"
|
| 76 |
)
|
| 77 |
-
|
| 78 |
-
outline = raw.split("学习大纲:")[-1].strip()
|
| 79 |
-
yield outline, snippet
|
| 80 |
except Exception as e:
|
| 81 |
-
|
| 82 |
-
yield "⚠️ 抱歉,生成失败,请稍后再试。", ""
|
| 83 |
-
|
| 84 |
-
def placeholder_fn(*args, **kwargs):
|
| 85 |
-
return "功能尚未实现,请等待后续更新。"
|
| 86 |
-
|
| 87 |
-
# 5. Gradio UI
|
| 88 |
-
with gr.Blocks(title="智能学习助手", theme=gr.themes.Base()) as demo:
|
| 89 |
-
gr.Markdown("# 📚 智能学习助手 v2.0\n— 专业课向量问答与大纲生成 —")
|
| 90 |
-
|
| 91 |
-
with gr.Tabs():
|
| 92 |
-
# Chat tab
|
| 93 |
-
with gr.TabItem("💬 智能问答"):
|
| 94 |
-
chatbot = gr.Chatbot(show_label=False, height=400)
|
| 95 |
-
user_msg = gr.Textbox(placeholder="输入学习问题", show_label=False)
|
| 96 |
-
send_btn = gr.Button("发送", variant="primary")
|
| 97 |
-
|
| 98 |
-
def chat_flow(message, history):
|
| 99 |
-
history.append((message, "🤔 正在思考中,请稍后…"))
|
| 100 |
-
yield "", history
|
| 101 |
-
ans = simple_qa(message)
|
| 102 |
-
history[-1] = (message, ans)
|
| 103 |
-
yield "", history
|
| 104 |
-
|
| 105 |
-
send_btn.click(chat_flow, [user_msg, chatbot], [user_msg, chatbot])
|
| 106 |
-
user_msg.submit(chat_flow, [user_msg, chatbot], [user_msg, chatbot])
|
| 107 |
-
|
| 108 |
-
# Outline tab
|
| 109 |
-
with gr.TabItem("📝 生成学习大纲"):
|
| 110 |
-
topic_in = gr.Textbox(label="章节主题", placeholder="例如:定积分")
|
| 111 |
-
outline_out = gr.Textbox(label="系统生成的大纲", lines=12)
|
| 112 |
-
snippet_out = gr.Textbox(label="[调试] 检索片段", lines=6, visible=False)
|
| 113 |
-
gen_btn = gr.Button("生成大纲", variant="primary")
|
| 114 |
-
gen_btn.click(generate_outline, inputs=topic_in, outputs=[outline_out, snippet_out])
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
-
gr.Textbox(label="标准答案", lines=4).render()
|
| 125 |
-
gr.Textbox(label="学生答案", lines=4).render()
|
| 126 |
-
gr.Button("开始批改").click(placeholder_fn, [], [])
|
| 127 |
|
| 128 |
-
|
| 129 |
|
| 130 |
-
if __name__ == "__main__":
|
| 131 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from langchain.vectorstores import Chroma
|
| 4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
| 5 |
from langchain.chains import RetrievalQA
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from langchain.llms import HuggingFacePipeline
|
| 8 |
|
| 9 |
+
# 设置路径
|
| 10 |
+
VECTOR_STORE_DIR = "./vector_store"
|
| 11 |
+
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
|
| 12 |
|
| 13 |
+
# 设置 LLM 和检索器
|
| 14 |
+
print("🔧 加载生成模型...")
|
| 15 |
+
gen_pipe = pipeline("text-generation", model=MODEL_NAME, max_new_tokens=256)
|
| 16 |
+
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
print("📚 加载向量库...")
|
| 19 |
+
embeddings = HuggingFaceEmbeddings(
|
| 20 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
+
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
| 23 |
|
| 24 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
|
|
|
| 25 |
qa_chain = RetrievalQA.from_chain_type(
|
| 26 |
llm=llm,
|
| 27 |
chain_type="stuff",
|
| 28 |
retriever=retriever,
|
| 29 |
+
return_source_documents=True
|
| 30 |
)
|
| 31 |
|
| 32 |
+
def qa_fn(query):
|
| 33 |
+
if not query.strip():
|
| 34 |
+
return "❌ 请输入问题内容。"
|
|
|
|
| 35 |
try:
|
| 36 |
+
result = qa_chain({"query": query})
|
| 37 |
+
answer = result["result"]
|
| 38 |
+
sources = result.get("source_documents", [])
|
| 39 |
+
sources_text = "\n\n".join(
|
| 40 |
+
[f"【片段 {i+1}】\n" + doc.page_content for i, doc in enumerate(sources)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
+
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
|
|
|
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
+
return f"❌ 出现错误:{str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
with gr.Blocks(title="数学知识问答助手") as demo:
|
| 47 |
+
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
|
| 48 |
+
with gr.Row():
|
| 49 |
+
query_input = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
|
| 50 |
+
output_box = gr.Textbox(label="回答", lines=15)
|
| 51 |
+
submit_btn = gr.Button("提问")
|
| 52 |
|
| 53 |
+
submit_btn.click(fn=qa_fn, inputs=query_input, outputs=output_box)
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
demo.launch()
|
| 56 |
|
|
|
|
|
|