Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,8 @@ from langchain.chains import RetrievalQA
|
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 12 |
|
|
|
|
|
|
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
|
| 15 |
# ─── 配置 ─────────────────────────────────────────────────────
|
|
@@ -17,8 +19,13 @@ VECTOR_STORE_DIR = "./vector_store"
|
|
| 17 |
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
|
| 18 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# ─── 1. 加载 LLM ────────────────────────────────────────────────
|
| 21 |
-
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 23 |
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
MODEL_NAME,
|
|
@@ -33,22 +40,22 @@ gen_pipe = pipeline(
|
|
| 33 |
temperature=0.5,
|
| 34 |
top_p=0.9,
|
| 35 |
do_sample=True,
|
|
|
|
| 36 |
)
|
| 37 |
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
| 38 |
-
|
| 39 |
|
| 40 |
# ─── 2. 加载向量库 ─────────────────────────────────────────────
|
| 41 |
-
|
| 42 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
| 43 |
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
| 44 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
| 45 |
-
|
| 46 |
|
| 47 |
# ─── 3. 自定义 Prompt ─────────────────────────────────────────
|
| 48 |
prompt_template = PromptTemplate.from_template(
|
| 49 |
"""你是一位专业的数学助教,请根据以下参考资料回答用户的问题。
|
| 50 |
如果资料中没有相关内容,请直接回答“我不知道”或“资料中未提及”,不要编造答案。
|
| 51 |
-
|
| 52 |
参考资料:
|
| 53 |
{context}
|
| 54 |
|
|
@@ -67,19 +74,17 @@ qa_chain = RetrievalQA.from_chain_type(
|
|
| 67 |
chain_type_kwargs={"prompt": prompt_template},
|
| 68 |
return_source_documents=True,
|
| 69 |
)
|
| 70 |
-
|
| 71 |
|
| 72 |
# ─── 5. 业务函数 ───────────────────────────────────────────────
|
| 73 |
def qa_fn(query: str):
|
| 74 |
if not query.strip():
|
| 75 |
return "❌ 请输入问题内容。"
|
| 76 |
-
# 执行检索与问答
|
| 77 |
result = qa_chain({"query": query})
|
| 78 |
answer = result["result"].strip()
|
| 79 |
sources = result.get("source_documents", [])
|
| 80 |
if not sources:
|
| 81 |
return "📌 回答:未在知识库中找到相关内容,请尝试更换问题或补充教材。"
|
| 82 |
-
# 拼接参考片段
|
| 83 |
sources_text = "\n\n".join(
|
| 84 |
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
|
| 85 |
)
|
|
@@ -103,3 +108,4 @@ if __name__ == "__main__":
|
|
| 103 |
|
| 104 |
|
| 105 |
|
|
|
|
|
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 12 |
|
| 13 |
+
from build_index import main as build_index_if_needed # 确保提交了 build_index.py
|
| 14 |
+
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
|
| 17 |
# ─── 配置 ─────────────────────────────────────────────────────
|
|
|
|
| 19 |
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
|
| 20 |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 21 |
|
| 22 |
+
# 如果向量库不存在,自动构建
|
| 23 |
+
if not os.path.exists(VECTOR_STORE_DIR) or not os.listdir(VECTOR_STORE_DIR):
|
| 24 |
+
logging.info("向量库不存在,启动自动构建……")
|
| 25 |
+
build_index_if_needed()
|
| 26 |
+
|
| 27 |
# ─── 1. 加载 LLM ────────────────────────────────────────────────
|
| 28 |
+
logging.info("🔧 加载生成模型…")
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 30 |
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
MODEL_NAME,
|
|
|
|
| 40 |
temperature=0.5,
|
| 41 |
top_p=0.9,
|
| 42 |
do_sample=True,
|
| 43 |
+
trust_remote_code=True,
|
| 44 |
)
|
| 45 |
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
| 46 |
+
logging.info("✅ 生成模型加载成功。")
|
| 47 |
|
| 48 |
# ─── 2. 加载向量库 ─────────────────────────────────────────────
|
| 49 |
+
logging.info("📚 加载向量库…")
|
| 50 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
| 51 |
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
| 52 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
| 53 |
+
logging.info("✅ 向量库加载成功。")
|
| 54 |
|
| 55 |
# ─── 3. 自定义 Prompt ─────────────────────────────────────────
|
| 56 |
prompt_template = PromptTemplate.from_template(
|
| 57 |
"""你是一位专业的数学助教,请根据以下参考资料回答用户的问题。
|
| 58 |
如果资料中没有相关内容,请直接回答“我不知道”或“资料中未提及”,不要编造答案。
|
|
|
|
| 59 |
参考资料:
|
| 60 |
{context}
|
| 61 |
|
|
|
|
| 74 |
chain_type_kwargs={"prompt": prompt_template},
|
| 75 |
return_source_documents=True,
|
| 76 |
)
|
| 77 |
+
logging.info("✅ RAG 问答链构建成功。")
|
| 78 |
|
| 79 |
# ─── 5. 业务函数 ───────────────────────────────────────────────
|
| 80 |
def qa_fn(query: str):
|
| 81 |
if not query.strip():
|
| 82 |
return "❌ 请输入问题内容。"
|
|
|
|
| 83 |
result = qa_chain({"query": query})
|
| 84 |
answer = result["result"].strip()
|
| 85 |
sources = result.get("source_documents", [])
|
| 86 |
if not sources:
|
| 87 |
return "📌 回答:未在知识库中找到相关内容,请尝试更换问题或补充教材。"
|
|
|
|
| 88 |
sources_text = "\n\n".join(
|
| 89 |
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
|
| 90 |
)
|
|
|
|
| 108 |
|
| 109 |
|
| 110 |
|
| 111 |
+
|