Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import inspect | |
| import sys | |
| from pathlib import Path | |
| from typing import Union | |
| from ultralytics.cfg import get_cfg | |
| from ultralytics.engine.exporter import Exporter | |
| from ultralytics.hub.utils import HUB_WEB_ROOT | |
| from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load | |
| from ultralytics.utils import (DEFAULT_CFG, DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, RANK, ROOT, callbacks, | |
| is_git_dir, yaml_load) | |
| from ultralytics.utils.checks import check_file, check_imgsz, check_pip_update_available, check_yaml | |
| from ultralytics.utils.downloads import GITHUB_ASSET_STEMS | |
| from ultralytics.utils.torch_utils import smart_inference_mode | |
| class Model: | |
| """ | |
| A base model class to unify apis for all the models. | |
| Args: | |
| model (str, Path): Path to the model file to load or create. | |
| task (Any, optional): Task type for the YOLO model. Defaults to None. | |
| Attributes: | |
| predictor (Any): The predictor object. | |
| model (Any): The model object. | |
| trainer (Any): The trainer object. | |
| task (str): The type of model task. | |
| ckpt (Any): The checkpoint object if the model loaded from *.pt file. | |
| cfg (str): The model configuration if loaded from *.yaml file. | |
| ckpt_path (str): The checkpoint file path. | |
| overrides (dict): Overrides for the trainer object. | |
| metrics (Any): The data for metrics. | |
| Methods: | |
| __call__(source=None, stream=False, **kwargs): | |
| Alias for the predict method. | |
| _new(cfg:str, verbose:bool=True) -> None: | |
| Initializes a new model and infers the task type from the model definitions. | |
| _load(weights:str, task:str='') -> None: | |
| Initializes a new model and infers the task type from the model head. | |
| _check_is_pytorch_model() -> None: | |
| Raises TypeError if the model is not a PyTorch model. | |
| reset() -> None: | |
| Resets the model modules. | |
| info(verbose:bool=False) -> None: | |
| Logs the model info. | |
| fuse() -> None: | |
| Fuses the model for faster inference. | |
| predict(source=None, stream=False, **kwargs) -> List[ultralytics.engine.results.Results]: | |
| Performs prediction using the YOLO model. | |
| Returns: | |
| list(ultralytics.engine.results.Results): The prediction results. | |
| """ | |
| def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None: | |
| """ | |
| Initializes the YOLO model. | |
| Args: | |
| model (Union[str, Path], optional): Path or name of the model to load or create. Defaults to 'yolov8n.pt'. | |
| task (Any, optional): Task type for the YOLO model. Defaults to None. | |
| """ | |
| self.callbacks = callbacks.get_default_callbacks() | |
| self.predictor = None # reuse predictor | |
| self.model = None # model object | |
| self.trainer = None # trainer object | |
| self.ckpt = None # if loaded from *.pt | |
| self.cfg = None # if loaded from *.yaml | |
| self.ckpt_path = None | |
| self.overrides = {} # overrides for trainer object | |
| self.metrics = None # validation/training metrics | |
| self.session = None # HUB session | |
| self.task = task # task type | |
| model = str(model).strip() # strip spaces | |
| # Check if Ultralytics HUB model from https://hub.ultralytics.com | |
| if self.is_hub_model(model): | |
| from ultralytics.hub.session import HUBTrainingSession | |
| self.session = HUBTrainingSession(model) | |
| model = self.session.model_file | |
| # Load or create new YOLO model | |
| suffix = Path(model).suffix | |
| if not suffix and Path(model).stem in GITHUB_ASSET_STEMS: | |
| model, suffix = Path(model).with_suffix('.pt'), '.pt' # add suffix, i.e. yolov8n -> yolov8n.pt | |
| if suffix in ('.yaml', '.yml'): | |
| self._new(model, task) | |
| else: | |
| self._load(model, task) | |
| def __call__(self, source=None, stream=False, **kwargs): | |
| """Calls the 'predict' function with given arguments to perform object detection.""" | |
| return self.predict(source, stream, **kwargs) | |
| def is_hub_model(model): | |
| """Check if the provided model is a HUB model.""" | |
| return any(( | |
| model.startswith(f'{HUB_WEB_ROOT}/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID | |
| [len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID | |
| len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID | |
| def _new(self, cfg: str, task=None, model=None, verbose=True): | |
| """ | |
| Initializes a new model and infers the task type from the model definitions. | |
| Args: | |
| cfg (str): model configuration file | |
| task (str | None): model task | |
| model (BaseModel): Customized model. | |
| verbose (bool): display model info on load | |
| """ | |
| cfg_dict = yaml_model_load(cfg) | |
| self.cfg = cfg | |
| self.task = task or guess_model_task(cfg_dict) | |
| model = model or self.smart_load('model') | |
| self.model = model(cfg_dict, verbose=verbose and RANK == -1) # build model | |
| self.overrides['model'] = self.cfg | |
| # Below added to allow export from yamls | |
| args = {**DEFAULT_CFG_DICT, **self.overrides} # combine model and default args, preferring model args | |
| self.model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model | |
| self.model.task = self.task | |
| def _load(self, weights: str, task=None): | |
| """ | |
| Initializes a new model and infers the task type from the model head. | |
| Args: | |
| weights (str): model checkpoint to be loaded | |
| task (str | None): model task | |
| """ | |
| suffix = Path(weights).suffix | |
| if suffix == '.pt': | |
| self.model, self.ckpt = attempt_load_one_weight(weights) | |
| self.task = self.model.args['task'] | |
| self.overrides = self.model.args = self._reset_ckpt_args(self.model.args) | |
| self.ckpt_path = self.model.pt_path | |
| else: | |
| weights = check_file(weights) | |
| self.model, self.ckpt = weights, None | |
| self.task = task or guess_model_task(weights) | |
| self.ckpt_path = weights | |
| self.overrides['model'] = weights | |
| self.overrides['task'] = self.task | |
| def _check_is_pytorch_model(self): | |
| """ | |
| Raises TypeError is model is not a PyTorch model | |
| """ | |
| pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' | |
| pt_module = isinstance(self.model, nn.Module) | |
| if not (pt_module or pt_str): | |
| raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. " | |
| f'PyTorch models can be used to train, val, predict and export, i.e. ' | |
| f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " | |
| f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") | |
| def reset_weights(self): | |
| """ | |
| Resets the model modules parameters to randomly initialized values, losing all training information. | |
| """ | |
| self._check_is_pytorch_model() | |
| for m in self.model.modules(): | |
| if hasattr(m, 'reset_parameters'): | |
| m.reset_parameters() | |
| for p in self.model.parameters(): | |
| p.requires_grad = True | |
| return self | |
| def load(self, weights='yolov8n.pt'): | |
| """ | |
| Transfers parameters with matching names and shapes from 'weights' to model. | |
| """ | |
| self._check_is_pytorch_model() | |
| if isinstance(weights, (str, Path)): | |
| weights, self.ckpt = attempt_load_one_weight(weights) | |
| self.model.load(weights) | |
| return self | |
| def info(self, detailed=False, verbose=True): | |
| """ | |
| Logs model info. | |
| Args: | |
| detailed (bool): Show detailed information about model. | |
| verbose (bool): Controls verbosity. | |
| """ | |
| self._check_is_pytorch_model() | |
| return self.model.info(detailed=detailed, verbose=verbose) | |
| def fuse(self): | |
| """Fuse PyTorch Conv2d and BatchNorm2d layers.""" | |
| self._check_is_pytorch_model() | |
| self.model.fuse() | |
| def predict(self, source=None, stream=False, predictor=None, **kwargs): | |
| """ | |
| Perform prediction using the YOLO model. | |
| Args: | |
| source (str | int | PIL | np.ndarray): The source of the image to make predictions on. | |
| Accepts all source types accepted by the YOLO model. | |
| stream (bool): Whether to stream the predictions or not. Defaults to False. | |
| predictor (BasePredictor): Customized predictor. | |
| **kwargs : Additional keyword arguments passed to the predictor. | |
| Check the 'configuration' section in the documentation for all available options. | |
| Returns: | |
| (List[ultralytics.engine.results.Results]): The prediction results. | |
| """ | |
| if source is None: | |
| source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' | |
| LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") | |
| is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any( | |
| x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track')) | |
| # Check prompts for SAM/FastSAM | |
| prompts = kwargs.pop('prompts', None) | |
| overrides = self.overrides.copy() | |
| overrides['conf'] = 0.25 | |
| overrides.update(kwargs) # prefer kwargs | |
| overrides['mode'] = kwargs.get('mode', 'predict') | |
| assert overrides['mode'] in ['track', 'predict'] | |
| if not is_cli: | |
| overrides['save'] = kwargs.get('save', False) # do not save by default if called in Python | |
| if not self.predictor: | |
| self.task = overrides.get('task') or self.task | |
| predictor = predictor or self.smart_load('predictor') | |
| self.predictor = predictor(overrides=overrides, _callbacks=self.callbacks) | |
| self.predictor.setup_model(model=self.model, verbose=is_cli) | |
| else: # only update args if predictor is already setup | |
| self.predictor.args = get_cfg(self.predictor.args, overrides) | |
| if 'project' in overrides or 'name' in overrides: | |
| self.predictor.save_dir = self.predictor.get_save_dir() | |
| # Set prompts for SAM/FastSAM | |
| if len and hasattr(self.predictor, 'set_prompts'): | |
| self.predictor.set_prompts(prompts) | |
| return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream) | |
| def track(self, source=None, stream=False, persist=False, **kwargs): | |
| """ | |
| Perform object tracking on the input source using the registered trackers. | |
| Args: | |
| source (str, optional): The input source for object tracking. Can be a file path or a video stream. | |
| stream (bool, optional): Whether the input source is a video stream. Defaults to False. | |
| persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False. | |
| **kwargs (optional): Additional keyword arguments for the tracking process. | |
| Returns: | |
| (List[ultralytics.engine.results.Results]): The tracking results. | |
| """ | |
| if not hasattr(self.predictor, 'trackers'): | |
| from ultralytics.trackers import register_tracker | |
| register_tracker(self, persist) | |
| # ByteTrack-based method needs low confidence predictions as input | |
| conf = kwargs.get('conf') or 0.1 | |
| kwargs['conf'] = conf | |
| kwargs['mode'] = 'track' | |
| return self.predict(source=source, stream=stream, **kwargs) | |
| def val(self, data=None, validator=None, **kwargs): | |
| """ | |
| Validate a model on a given dataset. | |
| Args: | |
| data (str): The dataset to validate on. Accepts all formats accepted by yolo | |
| validator (BaseValidator): Customized validator. | |
| **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs | |
| """ | |
| overrides = self.overrides.copy() | |
| overrides['rect'] = True # rect batches as default | |
| overrides.update(kwargs) | |
| overrides['mode'] = 'val' | |
| args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
| args.data = data or args.data | |
| if 'task' in overrides: | |
| self.task = args.task | |
| else: | |
| args.task = self.task | |
| validator = validator or self.smart_load('validator') | |
| if args.imgsz == DEFAULT_CFG.imgsz and not isinstance(self.model, (str, Path)): | |
| args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed | |
| args.imgsz = check_imgsz(args.imgsz, max_dim=1) | |
| validator = validator(args=args, _callbacks=self.callbacks) | |
| validator(model=self.model) | |
| self.metrics = validator.metrics | |
| return validator.metrics | |
| def benchmark(self, **kwargs): | |
| """ | |
| Benchmark a model on all export formats. | |
| Args: | |
| **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs | |
| """ | |
| self._check_is_pytorch_model() | |
| from ultralytics.utils.benchmarks import benchmark | |
| overrides = self.model.args.copy() | |
| overrides.update(kwargs) | |
| overrides['mode'] = 'benchmark' | |
| overrides = {**DEFAULT_CFG_DICT, **overrides} # fill in missing overrides keys with defaults | |
| return benchmark( | |
| model=self, | |
| data=kwargs.get('data'), # if no 'data' argument passed set data=None for default datasets | |
| imgsz=overrides['imgsz'], | |
| half=overrides['half'], | |
| int8=overrides['int8'], | |
| device=overrides['device'], | |
| verbose=overrides['verbose']) | |
| def export(self, **kwargs): | |
| """ | |
| Export model. | |
| Args: | |
| **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs | |
| """ | |
| self._check_is_pytorch_model() | |
| overrides = self.overrides.copy() | |
| overrides.update(kwargs) | |
| overrides['mode'] = 'export' | |
| if overrides.get('imgsz') is None: | |
| overrides['imgsz'] = self.model.args['imgsz'] # use trained imgsz unless custom value is passed | |
| if 'batch' not in kwargs: | |
| overrides['batch'] = 1 # default to 1 if not modified | |
| if 'data' not in kwargs: | |
| overrides['data'] = None # default to None if not modified (avoid int8 calibration with coco.yaml) | |
| args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
| args.task = self.task | |
| return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) | |
| def train(self, trainer=None, **kwargs): | |
| """ | |
| Trains the model on a given dataset. | |
| Args: | |
| trainer (BaseTrainer, optional): Customized trainer. | |
| **kwargs (Any): Any number of arguments representing the training configuration. | |
| """ | |
| self._check_is_pytorch_model() | |
| if self.session: # Ultralytics HUB session | |
| if any(kwargs): | |
| LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.') | |
| kwargs = self.session.train_args | |
| check_pip_update_available() | |
| overrides = self.overrides.copy() | |
| if kwargs.get('cfg'): | |
| LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.") | |
| overrides = yaml_load(check_yaml(kwargs['cfg'])) | |
| overrides.update(kwargs) | |
| overrides['mode'] = 'train' | |
| if not overrides.get('data'): | |
| raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") | |
| if overrides.get('resume'): | |
| overrides['resume'] = self.ckpt_path | |
| self.task = overrides.get('task') or self.task | |
| trainer = trainer or self.smart_load('trainer') | |
| self.trainer = trainer(overrides=overrides, _callbacks=self.callbacks) | |
| if not overrides.get('resume'): # manually set model only if not resuming | |
| self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) | |
| self.model = self.trainer.model | |
| self.trainer.hub_session = self.session # attach optional HUB session | |
| self.trainer.train() | |
| # Update model and cfg after training | |
| if RANK in (-1, 0): | |
| self.model, _ = attempt_load_one_weight(str(self.trainer.best)) | |
| self.overrides = self.model.args | |
| self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP | |
| def to(self, device): | |
| """ | |
| Sends the model to the given device. | |
| Args: | |
| device (str): device | |
| """ | |
| self._check_is_pytorch_model() | |
| self.model.to(device) | |
| def tune(self, *args, **kwargs): | |
| """ | |
| Runs hyperparameter tuning using Ray Tune. See ultralytics.utils.tuner.run_ray_tune for Args. | |
| Returns: | |
| (dict): A dictionary containing the results of the hyperparameter search. | |
| Raises: | |
| ModuleNotFoundError: If Ray Tune is not installed. | |
| """ | |
| self._check_is_pytorch_model() | |
| from ultralytics.utils.tuner import run_ray_tune | |
| return run_ray_tune(self, *args, **kwargs) | |
| def names(self): | |
| """Returns class names of the loaded model.""" | |
| return self.model.names if hasattr(self.model, 'names') else None | |
| def device(self): | |
| """Returns device if PyTorch model.""" | |
| return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None | |
| def transforms(self): | |
| """Returns transform of the loaded model.""" | |
| return self.model.transforms if hasattr(self.model, 'transforms') else None | |
| def add_callback(self, event: str, func): | |
| """Add a callback.""" | |
| self.callbacks[event].append(func) | |
| def clear_callback(self, event: str): | |
| """Clear all event callbacks.""" | |
| self.callbacks[event] = [] | |
| def _reset_ckpt_args(args): | |
| """Reset arguments when loading a PyTorch model.""" | |
| include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model | |
| return {k: v for k, v in args.items() if k in include} | |
| def _reset_callbacks(self): | |
| """Reset all registered callbacks.""" | |
| for event in callbacks.default_callbacks.keys(): | |
| self.callbacks[event] = [callbacks.default_callbacks[event][0]] | |
| def __getattr__(self, attr): | |
| """Raises error if object has no requested attribute.""" | |
| name = self.__class__.__name__ | |
| raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |
| def smart_load(self, key): | |
| """Load model/trainer/validator/predictor.""" | |
| try: | |
| return self.task_map[self.task][key] | |
| except Exception: | |
| name = self.__class__.__name__ | |
| mode = inspect.stack()[1][3] # get the function name. | |
| raise NotImplementedError( | |
| f'WARNING ⚠️ `{name}` model does not support `{mode}` mode for `{self.task}` task yet.') | |
| def task_map(self): | |
| """ | |
| Map head to model, trainer, validator, and predictor classes. | |
| Returns: | |
| task_map (dict): The map of model task to mode classes. | |
| """ | |
| raise NotImplementedError('Please provide task map for your model!') | |