Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| from multiprocessing.pool import ThreadPool | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from ultralytics.models.yolo.detect import DetectionValidator | |
| from ultralytics.utils import LOGGER, NUM_THREADS, ops | |
| from ultralytics.utils.checks import check_requirements | |
| from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou | |
| from ultralytics.utils.plotting import output_to_target, plot_images | |
| class FastSAMValidator(DetectionValidator): | |
| def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
| """Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" | |
| super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
| self.args.task = 'segment' | |
| self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) | |
| def preprocess(self, batch): | |
| """Preprocesses batch by converting masks to float and sending to device.""" | |
| batch = super().preprocess(batch) | |
| batch['masks'] = batch['masks'].to(self.device).float() | |
| return batch | |
| def init_metrics(self, model): | |
| """Initialize metrics and select mask processing function based on save_json flag.""" | |
| super().init_metrics(model) | |
| self.plot_masks = [] | |
| if self.args.save_json: | |
| check_requirements('pycocotools>=2.0.6') | |
| self.process = ops.process_mask_upsample # more accurate | |
| else: | |
| self.process = ops.process_mask # faster | |
| def get_desc(self): | |
| """Return a formatted description of evaluation metrics.""" | |
| return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', | |
| 'R', 'mAP50', 'mAP50-95)') | |
| def postprocess(self, preds): | |
| """Postprocesses YOLO predictions and returns output detections with proto.""" | |
| p = ops.non_max_suppression(preds[0], | |
| self.args.conf, | |
| self.args.iou, | |
| labels=self.lb, | |
| multi_label=True, | |
| agnostic=self.args.single_cls, | |
| max_det=self.args.max_det, | |
| nc=self.nc) | |
| proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported | |
| return p, proto | |
| def update_metrics(self, preds, batch): | |
| """Metrics.""" | |
| for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): | |
| idx = batch['batch_idx'] == si | |
| cls = batch['cls'][idx] | |
| bbox = batch['bboxes'][idx] | |
| nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions | |
| shape = batch['ori_shape'][si] | |
| correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
| correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
| self.seen += 1 | |
| if npr == 0: | |
| if nl: | |
| self.stats.append((correct_bboxes, correct_masks, *torch.zeros( | |
| (2, 0), device=self.device), cls.squeeze(-1))) | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) | |
| continue | |
| # Masks | |
| midx = [si] if self.args.overlap_mask else idx | |
| gt_masks = batch['masks'][midx] | |
| pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:]) | |
| # Predictions | |
| if self.args.single_cls: | |
| pred[:, 5] = 0 | |
| predn = pred.clone() | |
| ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape, | |
| ratio_pad=batch['ratio_pad'][si]) # native-space pred | |
| # Evaluate | |
| if nl: | |
| height, width = batch['img'].shape[2:] | |
| tbox = ops.xywh2xyxy(bbox) * torch.tensor( | |
| (width, height, width, height), device=self.device) # target boxes | |
| ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape, | |
| ratio_pad=batch['ratio_pad'][si]) # native-space labels | |
| labelsn = torch.cat((cls, tbox), 1) # native-space labels | |
| correct_bboxes = self._process_batch(predn, labelsn) | |
| # TODO: maybe remove these `self.` arguments as they already are member variable | |
| correct_masks = self._process_batch(predn, | |
| labelsn, | |
| pred_masks, | |
| gt_masks, | |
| overlap=self.args.overlap_mask, | |
| masks=True) | |
| if self.args.plots: | |
| self.confusion_matrix.process_batch(predn, labelsn) | |
| # Append correct_masks, correct_boxes, pconf, pcls, tcls | |
| self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1))) | |
| pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) | |
| if self.args.plots and self.batch_i < 3: | |
| self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot | |
| # Save | |
| if self.args.save_json: | |
| pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), | |
| shape, | |
| ratio_pad=batch['ratio_pad'][si]) | |
| self.pred_to_json(predn, batch['im_file'][si], pred_masks) | |
| # if self.args.save_txt: | |
| # save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') | |
| def finalize_metrics(self, *args, **kwargs): | |
| """Sets speed and confusion matrix for evaluation metrics.""" | |
| self.metrics.speed = self.speed | |
| self.metrics.confusion_matrix = self.confusion_matrix | |
| def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False): | |
| """ | |
| Return correct prediction matrix | |
| Arguments: | |
| detections (array[N, 6]), x1, y1, x2, y2, conf, class | |
| labels (array[M, 5]), class, x1, y1, x2, y2 | |
| Returns: | |
| correct (array[N, 10]), for 10 IoU levels | |
| """ | |
| if masks: | |
| if overlap: | |
| nl = len(labels) | |
| index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 | |
| gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) | |
| gt_masks = torch.where(gt_masks == index, 1.0, 0.0) | |
| if gt_masks.shape[1:] != pred_masks.shape[1:]: | |
| gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0] | |
| gt_masks = gt_masks.gt_(0.5) | |
| iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) | |
| else: # boxes | |
| iou = box_iou(labels[:, 1:], detections[:, :4]) | |
| correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool) | |
| correct_class = labels[:, 0:1] == detections[:, 5] | |
| for i in range(len(self.iouv)): | |
| x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match | |
| if x[0].shape[0]: | |
| matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), | |
| 1).cpu().numpy() # [label, detect, iou] | |
| if x[0].shape[0] > 1: | |
| matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
| # matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
| correct[matches[:, 1].astype(int), i] = True | |
| return torch.tensor(correct, dtype=torch.bool, device=detections.device) | |
| def plot_val_samples(self, batch, ni): | |
| """Plots validation samples with bounding box labels.""" | |
| plot_images(batch['img'], | |
| batch['batch_idx'], | |
| batch['cls'].squeeze(-1), | |
| batch['bboxes'], | |
| batch['masks'], | |
| paths=batch['im_file'], | |
| fname=self.save_dir / f'val_batch{ni}_labels.jpg', | |
| names=self.names, | |
| on_plot=self.on_plot) | |
| def plot_predictions(self, batch, preds, ni): | |
| """Plots batch predictions with masks and bounding boxes.""" | |
| plot_images( | |
| batch['img'], | |
| *output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed | |
| torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, | |
| paths=batch['im_file'], | |
| fname=self.save_dir / f'val_batch{ni}_pred.jpg', | |
| names=self.names, | |
| on_plot=self.on_plot) # pred | |
| self.plot_masks.clear() | |
| def pred_to_json(self, predn, filename, pred_masks): | |
| """Save one JSON result.""" | |
| # Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
| from pycocotools.mask import encode # noqa | |
| def single_encode(x): | |
| """Encode predicted masks as RLE and append results to jdict.""" | |
| rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0] | |
| rle['counts'] = rle['counts'].decode('utf-8') | |
| return rle | |
| stem = Path(filename).stem | |
| image_id = int(stem) if stem.isnumeric() else stem | |
| box = ops.xyxy2xywh(predn[:, :4]) # xywh | |
| box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
| pred_masks = np.transpose(pred_masks, (2, 0, 1)) | |
| with ThreadPool(NUM_THREADS) as pool: | |
| rles = pool.map(single_encode, pred_masks) | |
| for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): | |
| self.jdict.append({ | |
| 'image_id': image_id, | |
| 'category_id': self.class_map[int(p[5])], | |
| 'bbox': [round(x, 3) for x in b], | |
| 'score': round(p[4], 5), | |
| 'segmentation': rles[i]}) | |
| def eval_json(self, stats): | |
| """Return COCO-style object detection evaluation metrics.""" | |
| if self.args.save_json and self.is_coco and len(self.jdict): | |
| anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations | |
| pred_json = self.save_dir / 'predictions.json' # predictions | |
| LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...') | |
| try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
| check_requirements('pycocotools>=2.0.6') | |
| from pycocotools.coco import COCO # noqa | |
| from pycocotools.cocoeval import COCOeval # noqa | |
| for x in anno_json, pred_json: | |
| assert x.is_file(), f'{x} file not found' | |
| anno = COCO(str(anno_json)) # init annotations api | |
| pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) | |
| for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]): | |
| if self.is_coco: | |
| eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval | |
| eval.evaluate() | |
| eval.accumulate() | |
| eval.summarize() | |
| idx = i * 4 + 2 | |
| stats[self.metrics.keys[idx + 1]], stats[ | |
| self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50 | |
| except Exception as e: | |
| LOGGER.warning(f'pycocotools unable to run: {e}') | |
| return stats | |