Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import torch | |
| from ultralytics.engine.predictor import BasePredictor | |
| from ultralytics.engine.results import Results | |
| from ultralytics.utils import ops | |
| from ultralytics.utils.ops import xyxy2xywh | |
| class NASPredictor(BasePredictor): | |
| def postprocess(self, preds_in, img, orig_imgs): | |
| """Postprocesses predictions and returns a list of Results objects.""" | |
| # Cat boxes and class scores | |
| boxes = xyxy2xywh(preds_in[0][0]) | |
| preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) | |
| preds = ops.non_max_suppression(preds, | |
| self.args.conf, | |
| self.args.iou, | |
| agnostic=self.args.agnostic_nms, | |
| max_det=self.args.max_det, | |
| classes=self.args.classes) | |
| results = [] | |
| for i, pred in enumerate(preds): | |
| orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs | |
| if not isinstance(orig_imgs, torch.Tensor): | |
| pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
| path = self.batch[0] | |
| img_path = path[i] if isinstance(path, list) else path | |
| results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) | |
| return results | |