Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| # -------------------------------------------------------- | |
| # TinyViT Model Architecture | |
| # Copyright (c) 2022 Microsoft | |
| # Adapted from LeViT and Swin Transformer | |
| # LeViT: (https://github.com/facebookresearch/levit) | |
| # Swin: (https://github.com/microsoft/swin-transformer) | |
| # Build the TinyViT Model | |
| # -------------------------------------------------------- | |
| import itertools | |
| from typing import Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as checkpoint | |
| from ultralytics.utils.instance import to_2tuple | |
| class Conv2d_BN(torch.nn.Sequential): | |
| def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1): | |
| super().__init__() | |
| self.add_module('c', torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False)) | |
| bn = torch.nn.BatchNorm2d(b) | |
| torch.nn.init.constant_(bn.weight, bn_weight_init) | |
| torch.nn.init.constant_(bn.bias, 0) | |
| self.add_module('bn', bn) | |
| def fuse(self): | |
| c, bn = self._modules.values() | |
| w = bn.weight / (bn.running_var + bn.eps) ** 0.5 | |
| w = c.weight * w[:, None, None, None] | |
| b = bn.bias - bn.running_mean * bn.weight / \ | |
| (bn.running_var + bn.eps)**0.5 | |
| m = torch.nn.Conv2d(w.size(1) * self.c.groups, | |
| w.size(0), | |
| w.shape[2:], | |
| stride=self.c.stride, | |
| padding=self.c.padding, | |
| dilation=self.c.dilation, | |
| groups=self.c.groups) | |
| m.weight.data.copy_(w) | |
| m.bias.data.copy_(b) | |
| return m | |
| # NOTE: This module and timm package is needed only for training. | |
| # from ultralytics.utils.checks import check_requirements | |
| # check_requirements('timm') | |
| # from timm.models.layers import DropPath as TimmDropPath | |
| # from timm.models.layers import trunc_normal_ | |
| # class DropPath(TimmDropPath): | |
| # | |
| # def __init__(self, drop_prob=None): | |
| # super().__init__(drop_prob=drop_prob) | |
| # self.drop_prob = drop_prob | |
| # | |
| # def __repr__(self): | |
| # msg = super().__repr__() | |
| # msg += f'(drop_prob={self.drop_prob})' | |
| # return msg | |
| class PatchEmbed(nn.Module): | |
| def __init__(self, in_chans, embed_dim, resolution, activation): | |
| super().__init__() | |
| img_size: Tuple[int, int] = to_2tuple(resolution) | |
| self.patches_resolution = (img_size[0] // 4, img_size[1] // 4) | |
| self.num_patches = self.patches_resolution[0] * \ | |
| self.patches_resolution[1] | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| n = embed_dim | |
| self.seq = nn.Sequential( | |
| Conv2d_BN(in_chans, n // 2, 3, 2, 1), | |
| activation(), | |
| Conv2d_BN(n // 2, n, 3, 2, 1), | |
| ) | |
| def forward(self, x): | |
| return self.seq(x) | |
| class MBConv(nn.Module): | |
| def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path): | |
| super().__init__() | |
| self.in_chans = in_chans | |
| self.hidden_chans = int(in_chans * expand_ratio) | |
| self.out_chans = out_chans | |
| self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1) | |
| self.act1 = activation() | |
| self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans) | |
| self.act2 = activation() | |
| self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0) | |
| self.act3 = activation() | |
| # NOTE: `DropPath` is needed only for training. | |
| # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.drop_path = nn.Identity() | |
| def forward(self, x): | |
| shortcut = x | |
| x = self.conv1(x) | |
| x = self.act1(x) | |
| x = self.conv2(x) | |
| x = self.act2(x) | |
| x = self.conv3(x) | |
| x = self.drop_path(x) | |
| x += shortcut | |
| x = self.act3(x) | |
| return x | |
| class PatchMerging(nn.Module): | |
| def __init__(self, input_resolution, dim, out_dim, activation): | |
| super().__init__() | |
| self.input_resolution = input_resolution | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.act = activation() | |
| self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0) | |
| stride_c = 2 | |
| if (out_dim == 320 or out_dim == 448 or out_dim == 576): | |
| stride_c = 1 | |
| self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim) | |
| self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0) | |
| def forward(self, x): | |
| if x.ndim == 3: | |
| H, W = self.input_resolution | |
| B = len(x) | |
| # (B, C, H, W) | |
| x = x.view(B, H, W, -1).permute(0, 3, 1, 2) | |
| x = self.conv1(x) | |
| x = self.act(x) | |
| x = self.conv2(x) | |
| x = self.act(x) | |
| x = self.conv3(x) | |
| x = x.flatten(2).transpose(1, 2) | |
| return x | |
| class ConvLayer(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution, | |
| depth, | |
| activation, | |
| drop_path=0., | |
| downsample=None, | |
| use_checkpoint=False, | |
| out_dim=None, | |
| conv_expand_ratio=4., | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # build blocks | |
| self.blocks = nn.ModuleList([ | |
| MBConv( | |
| dim, | |
| dim, | |
| conv_expand_ratio, | |
| activation, | |
| drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| ) for i in range(depth)]) | |
| # patch merging layer | |
| if downsample is not None: | |
| self.downsample = downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation) | |
| else: | |
| self.downsample = None | |
| def forward(self, x): | |
| for blk in self.blocks: | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| return x | |
| class Mlp(nn.Module): | |
| def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| self.norm = nn.LayerNorm(in_features) | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.act = act_layer() | |
| self.drop = nn.Dropout(drop) | |
| def forward(self, x): | |
| x = self.norm(x) | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop(x) | |
| x = self.fc2(x) | |
| x = self.drop(x) | |
| return x | |
| class Attention(torch.nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| key_dim, | |
| num_heads=8, | |
| attn_ratio=4, | |
| resolution=(14, 14), | |
| ): | |
| super().__init__() | |
| # (h, w) | |
| assert isinstance(resolution, tuple) and len(resolution) == 2 | |
| self.num_heads = num_heads | |
| self.scale = key_dim ** -0.5 | |
| self.key_dim = key_dim | |
| self.nh_kd = nh_kd = key_dim * num_heads | |
| self.d = int(attn_ratio * key_dim) | |
| self.dh = int(attn_ratio * key_dim) * num_heads | |
| self.attn_ratio = attn_ratio | |
| h = self.dh + nh_kd * 2 | |
| self.norm = nn.LayerNorm(dim) | |
| self.qkv = nn.Linear(dim, h) | |
| self.proj = nn.Linear(self.dh, dim) | |
| points = list(itertools.product(range(resolution[0]), range(resolution[1]))) | |
| N = len(points) | |
| attention_offsets = {} | |
| idxs = [] | |
| for p1 in points: | |
| for p2 in points: | |
| offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) | |
| if offset not in attention_offsets: | |
| attention_offsets[offset] = len(attention_offsets) | |
| idxs.append(attention_offsets[offset]) | |
| self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets))) | |
| self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N), persistent=False) | |
| def train(self, mode=True): | |
| super().train(mode) | |
| if mode and hasattr(self, 'ab'): | |
| del self.ab | |
| else: | |
| self.ab = self.attention_biases[:, self.attention_bias_idxs] | |
| def forward(self, x): # x (B,N,C) | |
| B, N, _ = x.shape | |
| # Normalization | |
| x = self.norm(x) | |
| qkv = self.qkv(x) | |
| # (B, N, num_heads, d) | |
| q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3) | |
| # (B, num_heads, N, d) | |
| q = q.permute(0, 2, 1, 3) | |
| k = k.permute(0, 2, 1, 3) | |
| v = v.permute(0, 2, 1, 3) | |
| self.ab = self.ab.to(self.attention_biases.device) | |
| attn = ((q @ k.transpose(-2, -1)) * self.scale + | |
| (self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab)) | |
| attn = attn.softmax(dim=-1) | |
| x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) | |
| x = self.proj(x) | |
| return x | |
| class TinyViTBlock(nn.Module): | |
| r""" TinyViT Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int, int]): Input resolution. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Window size. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| local_conv_size (int): the kernel size of the convolution between | |
| Attention and MLP. Default: 3 | |
| activation (torch.nn): the activation function. Default: nn.GELU | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution, | |
| num_heads, | |
| window_size=7, | |
| mlp_ratio=4., | |
| drop=0., | |
| drop_path=0., | |
| local_conv_size=3, | |
| activation=nn.GELU, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.num_heads = num_heads | |
| assert window_size > 0, 'window_size must be greater than 0' | |
| self.window_size = window_size | |
| self.mlp_ratio = mlp_ratio | |
| # NOTE: `DropPath` is needed only for training. | |
| # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| self.drop_path = nn.Identity() | |
| assert dim % num_heads == 0, 'dim must be divisible by num_heads' | |
| head_dim = dim // num_heads | |
| window_resolution = (window_size, window_size) | |
| self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution) | |
| mlp_hidden_dim = int(dim * mlp_ratio) | |
| mlp_activation = activation | |
| self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop) | |
| pad = local_conv_size // 2 | |
| self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim) | |
| def forward(self, x): | |
| H, W = self.input_resolution | |
| B, L, C = x.shape | |
| assert L == H * W, 'input feature has wrong size' | |
| res_x = x | |
| if H == self.window_size and W == self.window_size: | |
| x = self.attn(x) | |
| else: | |
| x = x.view(B, H, W, C) | |
| pad_b = (self.window_size - H % self.window_size) % self.window_size | |
| pad_r = (self.window_size - W % self.window_size) % self.window_size | |
| padding = pad_b > 0 or pad_r > 0 | |
| if padding: | |
| x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b)) | |
| pH, pW = H + pad_b, W + pad_r | |
| nH = pH // self.window_size | |
| nW = pW // self.window_size | |
| # window partition | |
| x = x.view(B, nH, self.window_size, nW, self.window_size, | |
| C).transpose(2, 3).reshape(B * nH * nW, self.window_size * self.window_size, C) | |
| x = self.attn(x) | |
| # window reverse | |
| x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C) | |
| if padding: | |
| x = x[:, :H, :W].contiguous() | |
| x = x.view(B, L, C) | |
| x = res_x + self.drop_path(x) | |
| x = x.transpose(1, 2).reshape(B, C, H, W) | |
| x = self.local_conv(x) | |
| x = x.view(B, C, L).transpose(1, 2) | |
| x = x + self.drop_path(self.mlp(x)) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f'dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, ' \ | |
| f'window_size={self.window_size}, mlp_ratio={self.mlp_ratio}' | |
| class BasicLayer(nn.Module): | |
| """ A basic TinyViT layer for one stage. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resolution. | |
| depth (int): Number of blocks. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Local window size. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
| local_conv_size (int): the kernel size of the depthwise convolution between attention and MLP. Default: 3 | |
| activation (torch.nn): the activation function. Default: nn.GELU | |
| out_dim (int | optional): the output dimension of the layer. Default: None | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution, | |
| depth, | |
| num_heads, | |
| window_size, | |
| mlp_ratio=4., | |
| drop=0., | |
| drop_path=0., | |
| downsample=None, | |
| use_checkpoint=False, | |
| local_conv_size=3, | |
| activation=nn.GELU, | |
| out_dim=None, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.depth = depth | |
| self.use_checkpoint = use_checkpoint | |
| # build blocks | |
| self.blocks = nn.ModuleList([ | |
| TinyViTBlock( | |
| dim=dim, | |
| input_resolution=input_resolution, | |
| num_heads=num_heads, | |
| window_size=window_size, | |
| mlp_ratio=mlp_ratio, | |
| drop=drop, | |
| drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
| local_conv_size=local_conv_size, | |
| activation=activation, | |
| ) for i in range(depth)]) | |
| # patch merging layer | |
| if downsample is not None: | |
| self.downsample = downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation) | |
| else: | |
| self.downsample = None | |
| def forward(self, x): | |
| for blk in self.blocks: | |
| if self.use_checkpoint: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| if self.downsample is not None: | |
| x = self.downsample(x) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}' | |
| class LayerNorm2d(nn.Module): | |
| def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(num_channels)) | |
| self.bias = nn.Parameter(torch.zeros(num_channels)) | |
| self.eps = eps | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
| return x | |
| class TinyViT(nn.Module): | |
| def __init__( | |
| self, | |
| img_size=224, | |
| in_chans=3, | |
| num_classes=1000, | |
| embed_dims=[96, 192, 384, 768], | |
| depths=[2, 2, 6, 2], | |
| num_heads=[3, 6, 12, 24], | |
| window_sizes=[7, 7, 14, 7], | |
| mlp_ratio=4., | |
| drop_rate=0., | |
| drop_path_rate=0.1, | |
| use_checkpoint=False, | |
| mbconv_expand_ratio=4.0, | |
| local_conv_size=3, | |
| layer_lr_decay=1.0, | |
| ): | |
| super().__init__() | |
| self.img_size = img_size | |
| self.num_classes = num_classes | |
| self.depths = depths | |
| self.num_layers = len(depths) | |
| self.mlp_ratio = mlp_ratio | |
| activation = nn.GELU | |
| self.patch_embed = PatchEmbed(in_chans=in_chans, | |
| embed_dim=embed_dims[0], | |
| resolution=img_size, | |
| activation=activation) | |
| patches_resolution = self.patch_embed.patches_resolution | |
| self.patches_resolution = patches_resolution | |
| # stochastic depth | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
| # build layers | |
| self.layers = nn.ModuleList() | |
| for i_layer in range(self.num_layers): | |
| kwargs = dict( | |
| dim=embed_dims[i_layer], | |
| input_resolution=(patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)), | |
| patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer))), | |
| # input_resolution=(patches_resolution[0] // (2 ** i_layer), | |
| # patches_resolution[1] // (2 ** i_layer)), | |
| depth=depths[i_layer], | |
| drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
| downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
| use_checkpoint=use_checkpoint, | |
| out_dim=embed_dims[min(i_layer + 1, | |
| len(embed_dims) - 1)], | |
| activation=activation, | |
| ) | |
| if i_layer == 0: | |
| layer = ConvLayer( | |
| conv_expand_ratio=mbconv_expand_ratio, | |
| **kwargs, | |
| ) | |
| else: | |
| layer = BasicLayer(num_heads=num_heads[i_layer], | |
| window_size=window_sizes[i_layer], | |
| mlp_ratio=self.mlp_ratio, | |
| drop=drop_rate, | |
| local_conv_size=local_conv_size, | |
| **kwargs) | |
| self.layers.append(layer) | |
| # Classifier head | |
| self.norm_head = nn.LayerNorm(embed_dims[-1]) | |
| self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity() | |
| # init weights | |
| self.apply(self._init_weights) | |
| self.set_layer_lr_decay(layer_lr_decay) | |
| self.neck = nn.Sequential( | |
| nn.Conv2d( | |
| embed_dims[-1], | |
| 256, | |
| kernel_size=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(256), | |
| nn.Conv2d( | |
| 256, | |
| 256, | |
| kernel_size=3, | |
| padding=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(256), | |
| ) | |
| def set_layer_lr_decay(self, layer_lr_decay): | |
| decay_rate = layer_lr_decay | |
| # layers -> blocks (depth) | |
| depth = sum(self.depths) | |
| lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)] | |
| def _set_lr_scale(m, scale): | |
| for p in m.parameters(): | |
| p.lr_scale = scale | |
| self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0])) | |
| i = 0 | |
| for layer in self.layers: | |
| for block in layer.blocks: | |
| block.apply(lambda x: _set_lr_scale(x, lr_scales[i])) | |
| i += 1 | |
| if layer.downsample is not None: | |
| layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1])) | |
| assert i == depth | |
| for m in [self.norm_head, self.head]: | |
| m.apply(lambda x: _set_lr_scale(x, lr_scales[-1])) | |
| for k, p in self.named_parameters(): | |
| p.param_name = k | |
| def _check_lr_scale(m): | |
| for p in m.parameters(): | |
| assert hasattr(p, 'lr_scale'), p.param_name | |
| self.apply(_check_lr_scale) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| # NOTE: This initialization is needed only for training. | |
| # trunc_normal_(m.weight, std=.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def no_weight_decay_keywords(self): | |
| return {'attention_biases'} | |
| def forward_features(self, x): | |
| # x: (N, C, H, W) | |
| x = self.patch_embed(x) | |
| x = self.layers[0](x) | |
| start_i = 1 | |
| for i in range(start_i, len(self.layers)): | |
| layer = self.layers[i] | |
| x = layer(x) | |
| B, _, C = x.size() | |
| x = x.view(B, 64, 64, C) | |
| x = x.permute(0, 3, 1, 2) | |
| x = self.neck(x) | |
| return x | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| return x | |