Spaces:
Sleeping
Sleeping
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import torch | |
| from ultralytics.engine.predictor import BasePredictor | |
| from ultralytics.engine.results import Results | |
| from ultralytics.utils import DEFAULT_CFG, ROOT | |
| class ClassificationPredictor(BasePredictor): | |
| def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
| super().__init__(cfg, overrides, _callbacks) | |
| self.args.task = 'classify' | |
| def preprocess(self, img): | |
| """Converts input image to model-compatible data type.""" | |
| if not isinstance(img, torch.Tensor): | |
| img = torch.stack([self.transforms(im) for im in img], dim=0) | |
| img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) | |
| return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32 | |
| def postprocess(self, preds, img, orig_imgs): | |
| """Postprocesses predictions to return Results objects.""" | |
| results = [] | |
| for i, pred in enumerate(preds): | |
| orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs | |
| path = self.batch[0] | |
| img_path = path[i] if isinstance(path, list) else path | |
| results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, probs=pred)) | |
| return results | |
| def predict(cfg=DEFAULT_CFG, use_python=False): | |
| """Run YOLO model predictions on input images/videos.""" | |
| model = cfg.model or 'yolov8n-cls.pt' # or "resnet18" | |
| source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ | |
| else 'https://ultralytics.com/images/bus.jpg' | |
| args = dict(model=model, source=source) | |
| if use_python: | |
| from ultralytics import YOLO | |
| YOLO(model)(**args) | |
| else: | |
| predictor = ClassificationPredictor(overrides=args) | |
| predictor.predict_cli() | |
| if __name__ == '__main__': | |
| predict() | |