Spaces:
Sleeping
Sleeping
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import torch | |
| from ultralytics.engine.predictor import BasePredictor | |
| from ultralytics.engine.results import Results | |
| from ultralytics.utils import DEFAULT_CFG, ROOT, ops | |
| class DetectionPredictor(BasePredictor): | |
| def postprocess(self, preds, img, orig_imgs): | |
| """Postprocesses predictions and returns a list of Results objects.""" | |
| preds = ops.non_max_suppression(preds, | |
| self.args.conf, | |
| self.args.iou, | |
| agnostic=self.args.agnostic_nms, | |
| max_det=self.args.max_det, | |
| classes=self.args.classes) | |
| results = [] | |
| for i, pred in enumerate(preds): | |
| orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs | |
| if not isinstance(orig_imgs, torch.Tensor): | |
| pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
| path = self.batch[0] | |
| img_path = path[i] if isinstance(path, list) else path | |
| results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) | |
| return results | |
| def predict(cfg=DEFAULT_CFG, use_python=False): | |
| """Runs YOLO model inference on input image(s).""" | |
| model = cfg.model or 'yolov8n.pt' | |
| source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ | |
| else 'https://ultralytics.com/images/bus.jpg' | |
| args = dict(model=model, source=source) | |
| if use_python: | |
| from ultralytics import YOLO | |
| YOLO(model)(**args) | |
| else: | |
| predictor = DetectionPredictor(overrides=args) | |
| predictor.predict_cli() | |
| if __name__ == '__main__': | |
| predict() | |