Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| """ | |
| Module utils | |
| """ | |
| import copy | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.init import uniform_ | |
| __all__ = 'multi_scale_deformable_attn_pytorch', 'inverse_sigmoid' | |
| def _get_clones(module, n): | |
| return nn.ModuleList([copy.deepcopy(module) for _ in range(n)]) | |
| def bias_init_with_prob(prior_prob=0.01): | |
| """initialize conv/fc bias value according to a given probability value.""" | |
| return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init | |
| def linear_init_(module): | |
| bound = 1 / math.sqrt(module.weight.shape[0]) | |
| uniform_(module.weight, -bound, bound) | |
| if hasattr(module, 'bias') and module.bias is not None: | |
| uniform_(module.bias, -bound, bound) | |
| def inverse_sigmoid(x, eps=1e-5): | |
| x = x.clamp(min=0, max=1) | |
| x1 = x.clamp(min=eps) | |
| x2 = (1 - x).clamp(min=eps) | |
| return torch.log(x1 / x2) | |
| def multi_scale_deformable_attn_pytorch(value: torch.Tensor, value_spatial_shapes: torch.Tensor, | |
| sampling_locations: torch.Tensor, | |
| attention_weights: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Multi-scale deformable attention. | |
| https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py | |
| """ | |
| bs, _, num_heads, embed_dims = value.shape | |
| _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape | |
| value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1) | |
| sampling_grids = 2 * sampling_locations - 1 | |
| sampling_value_list = [] | |
| for level, (H_, W_) in enumerate(value_spatial_shapes): | |
| # bs, H_*W_, num_heads, embed_dims -> | |
| # bs, H_*W_, num_heads*embed_dims -> | |
| # bs, num_heads*embed_dims, H_*W_ -> | |
| # bs*num_heads, embed_dims, H_, W_ | |
| value_l_ = (value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)) | |
| # bs, num_queries, num_heads, num_points, 2 -> | |
| # bs, num_heads, num_queries, num_points, 2 -> | |
| # bs*num_heads, num_queries, num_points, 2 | |
| sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1) | |
| # bs*num_heads, embed_dims, num_queries, num_points | |
| sampling_value_l_ = F.grid_sample(value_l_, | |
| sampling_grid_l_, | |
| mode='bilinear', | |
| padding_mode='zeros', | |
| align_corners=False) | |
| sampling_value_list.append(sampling_value_l_) | |
| # (bs, num_queries, num_heads, num_levels, num_points) -> | |
| # (bs, num_heads, num_queries, num_levels, num_points) -> | |
| # (bs, num_heads, 1, num_queries, num_levels*num_points) | |
| attention_weights = attention_weights.transpose(1, 2).reshape(bs * num_heads, 1, num_queries, | |
| num_levels * num_points) | |
| output = ((torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view( | |
| bs, num_heads * embed_dims, num_queries)) | |
| return output.transpose(1, 2).contiguous() | |