Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import numpy as np | |
| from .basetrack import BaseTrack, TrackState | |
| from .utils import matching | |
| from .utils.kalman_filter import KalmanFilterXYAH | |
| class STrack(BaseTrack): | |
| shared_kalman = KalmanFilterXYAH() | |
| def __init__(self, tlwh, score, cls): | |
| """wait activate.""" | |
| self._tlwh = np.asarray(self.tlbr_to_tlwh(tlwh[:-1]), dtype=np.float32) | |
| self.kalman_filter = None | |
| self.mean, self.covariance = None, None | |
| self.is_activated = False | |
| self.score = score | |
| self.tracklet_len = 0 | |
| self.cls = cls | |
| self.idx = tlwh[-1] | |
| def predict(self): | |
| """Predicts mean and covariance using Kalman filter.""" | |
| mean_state = self.mean.copy() | |
| if self.state != TrackState.Tracked: | |
| mean_state[7] = 0 | |
| self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) | |
| def multi_predict(stracks): | |
| """Perform multi-object predictive tracking using Kalman filter for given stracks.""" | |
| if len(stracks) <= 0: | |
| return | |
| multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
| multi_covariance = np.asarray([st.covariance for st in stracks]) | |
| for i, st in enumerate(stracks): | |
| if st.state != TrackState.Tracked: | |
| multi_mean[i][7] = 0 | |
| multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance) | |
| for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
| stracks[i].mean = mean | |
| stracks[i].covariance = cov | |
| def multi_gmc(stracks, H=np.eye(2, 3)): | |
| """Update state tracks positions and covariances using a homography matrix.""" | |
| if len(stracks) > 0: | |
| multi_mean = np.asarray([st.mean.copy() for st in stracks]) | |
| multi_covariance = np.asarray([st.covariance for st in stracks]) | |
| R = H[:2, :2] | |
| R8x8 = np.kron(np.eye(4, dtype=float), R) | |
| t = H[:2, 2] | |
| for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): | |
| mean = R8x8.dot(mean) | |
| mean[:2] += t | |
| cov = R8x8.dot(cov).dot(R8x8.transpose()) | |
| stracks[i].mean = mean | |
| stracks[i].covariance = cov | |
| def activate(self, kalman_filter, frame_id): | |
| """Start a new tracklet.""" | |
| self.kalman_filter = kalman_filter | |
| self.track_id = self.next_id() | |
| self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh)) | |
| self.tracklet_len = 0 | |
| self.state = TrackState.Tracked | |
| if frame_id == 1: | |
| self.is_activated = True | |
| self.frame_id = frame_id | |
| self.start_frame = frame_id | |
| def re_activate(self, new_track, frame_id, new_id=False): | |
| """Reactivates a previously lost track with a new detection.""" | |
| self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance, | |
| self.convert_coords(new_track.tlwh)) | |
| self.tracklet_len = 0 | |
| self.state = TrackState.Tracked | |
| self.is_activated = True | |
| self.frame_id = frame_id | |
| if new_id: | |
| self.track_id = self.next_id() | |
| self.score = new_track.score | |
| self.cls = new_track.cls | |
| self.idx = new_track.idx | |
| def update(self, new_track, frame_id): | |
| """ | |
| Update a matched track | |
| :type new_track: STrack | |
| :type frame_id: int | |
| :return: | |
| """ | |
| self.frame_id = frame_id | |
| self.tracklet_len += 1 | |
| new_tlwh = new_track.tlwh | |
| self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance, | |
| self.convert_coords(new_tlwh)) | |
| self.state = TrackState.Tracked | |
| self.is_activated = True | |
| self.score = new_track.score | |
| self.cls = new_track.cls | |
| self.idx = new_track.idx | |
| def convert_coords(self, tlwh): | |
| """Convert a bounding box's top-left-width-height format to its x-y-angle-height equivalent.""" | |
| return self.tlwh_to_xyah(tlwh) | |
| def tlwh(self): | |
| """Get current position in bounding box format `(top left x, top left y, | |
| width, height)`. | |
| """ | |
| if self.mean is None: | |
| return self._tlwh.copy() | |
| ret = self.mean[:4].copy() | |
| ret[2] *= ret[3] | |
| ret[:2] -= ret[2:] / 2 | |
| return ret | |
| def tlbr(self): | |
| """Convert bounding box to format `(min x, min y, max x, max y)`, i.e., | |
| `(top left, bottom right)`. | |
| """ | |
| ret = self.tlwh.copy() | |
| ret[2:] += ret[:2] | |
| return ret | |
| def tlwh_to_xyah(tlwh): | |
| """Convert bounding box to format `(center x, center y, aspect ratio, | |
| height)`, where the aspect ratio is `width / height`. | |
| """ | |
| ret = np.asarray(tlwh).copy() | |
| ret[:2] += ret[2:] / 2 | |
| ret[2] /= ret[3] | |
| return ret | |
| def tlbr_to_tlwh(tlbr): | |
| """Converts top-left bottom-right format to top-left width height format.""" | |
| ret = np.asarray(tlbr).copy() | |
| ret[2:] -= ret[:2] | |
| return ret | |
| def tlwh_to_tlbr(tlwh): | |
| """Converts tlwh bounding box format to tlbr format.""" | |
| ret = np.asarray(tlwh).copy() | |
| ret[2:] += ret[:2] | |
| return ret | |
| def __repr__(self): | |
| """Return a string representation of the BYTETracker object with start and end frames and track ID.""" | |
| return f'OT_{self.track_id}_({self.start_frame}-{self.end_frame})' | |
| class BYTETracker: | |
| def __init__(self, args, frame_rate=30): | |
| """Initialize a YOLOv8 object to track objects with given arguments and frame rate.""" | |
| self.tracked_stracks = [] # type: list[STrack] | |
| self.lost_stracks = [] # type: list[STrack] | |
| self.removed_stracks = [] # type: list[STrack] | |
| self.frame_id = 0 | |
| self.args = args | |
| self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer) | |
| self.kalman_filter = self.get_kalmanfilter() | |
| self.reset_id() | |
| def update(self, results, img=None): | |
| """Updates object tracker with new detections and returns tracked object bounding boxes.""" | |
| self.frame_id += 1 | |
| activated_stracks = [] | |
| refind_stracks = [] | |
| lost_stracks = [] | |
| removed_stracks = [] | |
| scores = results.conf | |
| bboxes = results.xyxy | |
| # Add index | |
| bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1) | |
| cls = results.cls | |
| remain_inds = scores > self.args.track_high_thresh | |
| inds_low = scores > self.args.track_low_thresh | |
| inds_high = scores < self.args.track_high_thresh | |
| inds_second = np.logical_and(inds_low, inds_high) | |
| dets_second = bboxes[inds_second] | |
| dets = bboxes[remain_inds] | |
| scores_keep = scores[remain_inds] | |
| scores_second = scores[inds_second] | |
| cls_keep = cls[remain_inds] | |
| cls_second = cls[inds_second] | |
| detections = self.init_track(dets, scores_keep, cls_keep, img) | |
| # Add newly detected tracklets to tracked_stracks | |
| unconfirmed = [] | |
| tracked_stracks = [] # type: list[STrack] | |
| for track in self.tracked_stracks: | |
| if not track.is_activated: | |
| unconfirmed.append(track) | |
| else: | |
| tracked_stracks.append(track) | |
| # Step 2: First association, with high score detection boxes | |
| strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks) | |
| # Predict the current location with KF | |
| self.multi_predict(strack_pool) | |
| if hasattr(self, 'gmc') and img is not None: | |
| warp = self.gmc.apply(img, dets) | |
| STrack.multi_gmc(strack_pool, warp) | |
| STrack.multi_gmc(unconfirmed, warp) | |
| dists = self.get_dists(strack_pool, detections) | |
| matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh) | |
| for itracked, idet in matches: | |
| track = strack_pool[itracked] | |
| det = detections[idet] | |
| if track.state == TrackState.Tracked: | |
| track.update(det, self.frame_id) | |
| activated_stracks.append(track) | |
| else: | |
| track.re_activate(det, self.frame_id, new_id=False) | |
| refind_stracks.append(track) | |
| # Step 3: Second association, with low score detection boxes | |
| # association the untrack to the low score detections | |
| detections_second = self.init_track(dets_second, scores_second, cls_second, img) | |
| r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] | |
| # TODO | |
| dists = matching.iou_distance(r_tracked_stracks, detections_second) | |
| matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5) | |
| for itracked, idet in matches: | |
| track = r_tracked_stracks[itracked] | |
| det = detections_second[idet] | |
| if track.state == TrackState.Tracked: | |
| track.update(det, self.frame_id) | |
| activated_stracks.append(track) | |
| else: | |
| track.re_activate(det, self.frame_id, new_id=False) | |
| refind_stracks.append(track) | |
| for it in u_track: | |
| track = r_tracked_stracks[it] | |
| if track.state != TrackState.Lost: | |
| track.mark_lost() | |
| lost_stracks.append(track) | |
| # Deal with unconfirmed tracks, usually tracks with only one beginning frame | |
| detections = [detections[i] for i in u_detection] | |
| dists = self.get_dists(unconfirmed, detections) | |
| matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) | |
| for itracked, idet in matches: | |
| unconfirmed[itracked].update(detections[idet], self.frame_id) | |
| activated_stracks.append(unconfirmed[itracked]) | |
| for it in u_unconfirmed: | |
| track = unconfirmed[it] | |
| track.mark_removed() | |
| removed_stracks.append(track) | |
| # Step 4: Init new stracks | |
| for inew in u_detection: | |
| track = detections[inew] | |
| if track.score < self.args.new_track_thresh: | |
| continue | |
| track.activate(self.kalman_filter, self.frame_id) | |
| activated_stracks.append(track) | |
| # Step 5: Update state | |
| for track in self.lost_stracks: | |
| if self.frame_id - track.end_frame > self.max_time_lost: | |
| track.mark_removed() | |
| removed_stracks.append(track) | |
| self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] | |
| self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks) | |
| self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks) | |
| self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks) | |
| self.lost_stracks.extend(lost_stracks) | |
| self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks) | |
| self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) | |
| self.removed_stracks.extend(removed_stracks) | |
| if len(self.removed_stracks) > 1000: | |
| self.removed_stracks = self.removed_stracks[-999:] # clip remove stracks to 1000 maximum | |
| return np.asarray( | |
| [x.tlbr.tolist() + [x.track_id, x.score, x.cls, x.idx] for x in self.tracked_stracks if x.is_activated], | |
| dtype=np.float32) | |
| def get_kalmanfilter(self): | |
| """Returns a Kalman filter object for tracking bounding boxes.""" | |
| return KalmanFilterXYAH() | |
| def init_track(self, dets, scores, cls, img=None): | |
| """Initialize object tracking with detections and scores using STrack algorithm.""" | |
| return [STrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)] if len(dets) else [] # detections | |
| def get_dists(self, tracks, detections): | |
| """Calculates the distance between tracks and detections using IOU and fuses scores.""" | |
| dists = matching.iou_distance(tracks, detections) | |
| # TODO: mot20 | |
| # if not self.args.mot20: | |
| dists = matching.fuse_score(dists, detections) | |
| return dists | |
| def multi_predict(self, tracks): | |
| """Returns the predicted tracks using the YOLOv8 network.""" | |
| STrack.multi_predict(tracks) | |
| def reset_id(self): | |
| """Resets the ID counter of STrack.""" | |
| STrack.reset_id() | |
| def joint_stracks(tlista, tlistb): | |
| """Combine two lists of stracks into a single one.""" | |
| exists = {} | |
| res = [] | |
| for t in tlista: | |
| exists[t.track_id] = 1 | |
| res.append(t) | |
| for t in tlistb: | |
| tid = t.track_id | |
| if not exists.get(tid, 0): | |
| exists[tid] = 1 | |
| res.append(t) | |
| return res | |
| def sub_stracks(tlista, tlistb): | |
| """DEPRECATED CODE in https://github.com/ultralytics/ultralytics/pull/1890/ | |
| stracks = {t.track_id: t for t in tlista} | |
| for t in tlistb: | |
| tid = t.track_id | |
| if stracks.get(tid, 0): | |
| del stracks[tid] | |
| return list(stracks.values()) | |
| """ | |
| track_ids_b = {t.track_id for t in tlistb} | |
| return [t for t in tlista if t.track_id not in track_ids_b] | |
| def remove_duplicate_stracks(stracksa, stracksb): | |
| """Remove duplicate stracks with non-maximum IOU distance.""" | |
| pdist = matching.iou_distance(stracksa, stracksb) | |
| pairs = np.where(pdist < 0.15) | |
| dupa, dupb = [], [] | |
| for p, q in zip(*pairs): | |
| timep = stracksa[p].frame_id - stracksa[p].start_frame | |
| timeq = stracksb[q].frame_id - stracksb[q].start_frame | |
| if timep > timeq: | |
| dupb.append(q) | |
| else: | |
| dupa.append(p) | |
| resa = [t for i, t in enumerate(stracksa) if i not in dupa] | |
| resb = [t for i, t in enumerate(stracksb) if i not in dupb] | |
| return resa, resb | |