Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import matplotlib.image as mpimg | |
| import matplotlib.pyplot as plt | |
| from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING | |
| from ultralytics.utils.torch_utils import model_info_for_loggers | |
| try: | |
| import neptune | |
| from neptune.types import File | |
| assert not TESTS_RUNNING # do not log pytest | |
| assert hasattr(neptune, '__version__') | |
| assert SETTINGS['neptune'] is True # verify integration is enabled | |
| except (ImportError, AssertionError): | |
| neptune = None | |
| run = None # NeptuneAI experiment logger instance | |
| def _log_scalars(scalars, step=0): | |
| """Log scalars to the NeptuneAI experiment logger.""" | |
| if run: | |
| for k, v in scalars.items(): | |
| run[k].append(value=v, step=step) | |
| def _log_images(imgs_dict, group=''): | |
| """Log scalars to the NeptuneAI experiment logger.""" | |
| if run: | |
| for k, v in imgs_dict.items(): | |
| run[f'{group}/{k}'].upload(File(v)) | |
| def _log_plot(title, plot_path): | |
| """Log plots to the NeptuneAI experiment logger.""" | |
| """ | |
| Log image as plot in the plot section of NeptuneAI | |
| arguments: | |
| title (str) Title of the plot | |
| plot_path (PosixPath or str) Path to the saved image file | |
| """ | |
| img = mpimg.imread(plot_path) | |
| fig = plt.figure() | |
| ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks | |
| ax.imshow(img) | |
| run[f'Plots/{title}'].upload(fig) | |
| def on_pretrain_routine_start(trainer): | |
| """Callback function called before the training routine starts.""" | |
| try: | |
| global run | |
| run = neptune.init_run(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, tags=['YOLOv8']) | |
| run['Configuration/Hyperparameters'] = {k: '' if v is None else v for k, v in vars(trainer.args).items()} | |
| except Exception as e: | |
| LOGGER.warning(f'WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}') | |
| def on_train_epoch_end(trainer): | |
| """Callback function called at end of each training epoch.""" | |
| _log_scalars(trainer.label_loss_items(trainer.tloss, prefix='train'), trainer.epoch + 1) | |
| _log_scalars(trainer.lr, trainer.epoch + 1) | |
| if trainer.epoch == 1: | |
| _log_images({f.stem: str(f) for f in trainer.save_dir.glob('train_batch*.jpg')}, 'Mosaic') | |
| def on_fit_epoch_end(trainer): | |
| """Callback function called at end of each fit (train+val) epoch.""" | |
| if run and trainer.epoch == 0: | |
| run['Configuration/Model'] = model_info_for_loggers(trainer) | |
| _log_scalars(trainer.metrics, trainer.epoch + 1) | |
| def on_val_end(validator): | |
| """Callback function called at end of each validation.""" | |
| if run: | |
| # Log val_labels and val_pred | |
| _log_images({f.stem: str(f) for f in validator.save_dir.glob('val*.jpg')}, 'Validation') | |
| def on_train_end(trainer): | |
| """Callback function called at end of training.""" | |
| if run: | |
| # Log final results, CM matrix + PR plots | |
| files = [ | |
| 'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', | |
| *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] | |
| files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter | |
| for f in files: | |
| _log_plot(title=f.stem, plot_path=f) | |
| # Log the final model | |
| run[f'weights/{trainer.args.name or trainer.args.task}/{str(trainer.best.name)}'].upload(File(str( | |
| trainer.best))) | |
| callbacks = { | |
| 'on_pretrain_routine_start': on_pretrain_routine_start, | |
| 'on_train_epoch_end': on_train_epoch_end, | |
| 'on_fit_epoch_end': on_fit_epoch_end, | |
| 'on_val_end': on_val_end, | |
| 'on_train_end': on_train_end} if neptune else {} | |