Spaces:
Running
Running
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| from ultralytics.utils import SETTINGS, TESTS_RUNNING | |
| from ultralytics.utils.torch_utils import model_info_for_loggers | |
| try: | |
| import wandb as wb | |
| assert hasattr(wb, '__version__') | |
| assert not TESTS_RUNNING # do not log pytest | |
| assert SETTINGS['wandb'] is True # verify integration is enabled | |
| except (ImportError, AssertionError): | |
| wb = None | |
| _processed_plots = {} | |
| def _log_plots(plots, step): | |
| for name, params in plots.items(): | |
| timestamp = params['timestamp'] | |
| if _processed_plots.get(name) != timestamp: | |
| wb.run.log({name.stem: wb.Image(str(name))}, step=step) | |
| _processed_plots[name] = timestamp | |
| def on_pretrain_routine_start(trainer): | |
| """Initiate and start project if module is present.""" | |
| wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args)) | |
| def on_fit_epoch_end(trainer): | |
| """Logs training metrics and model information at the end of an epoch.""" | |
| wb.run.log(trainer.metrics, step=trainer.epoch + 1) | |
| _log_plots(trainer.plots, step=trainer.epoch + 1) | |
| _log_plots(trainer.validator.plots, step=trainer.epoch + 1) | |
| if trainer.epoch == 0: | |
| wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1) | |
| def on_train_epoch_end(trainer): | |
| """Log metrics and save images at the end of each training epoch.""" | |
| wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1) | |
| wb.run.log(trainer.lr, step=trainer.epoch + 1) | |
| if trainer.epoch == 1: | |
| _log_plots(trainer.plots, step=trainer.epoch + 1) | |
| def on_train_end(trainer): | |
| """Save the best model as an artifact at end of training.""" | |
| _log_plots(trainer.validator.plots, step=trainer.epoch + 1) | |
| _log_plots(trainer.plots, step=trainer.epoch + 1) | |
| art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model') | |
| if trainer.best.exists(): | |
| art.add_file(trainer.best) | |
| wb.run.log_artifact(art, aliases=['best']) | |
| callbacks = { | |
| 'on_pretrain_routine_start': on_pretrain_routine_start, | |
| 'on_train_epoch_end': on_train_epoch_end, | |
| 'on_fit_epoch_end': on_fit_epoch_end, | |
| 'on_train_end': on_train_end} if wb else {} | |