Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 14,983 Bytes
			
			| 4d308e1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | """
GPT model (rewrite, a lot simpler)
Notable features:
- rotary embeddings (and no positional embeddings)
- QK norm
- untied weights for token embedding and lm_head
- relu^2 activation in MLP
- norm after token embedding
- no learnable params in rmsnorm
- no bias in linear layers
- Multi-Query Attention (MQA) support for more efficient inference
"""
import math
from functools import partial
from dataclasses import dataclass
import torch
import torch.nn as nn
import torch.nn.functional as F
from nanochat.common import get_dist_info, print0
from nanochat.muon import Muon, DistMuon
from nanochat.adamw import DistAdamW
@dataclass
class GPTConfig:
    sequence_len: int = 1024
    vocab_size: int = 50304
    n_layer: int = 12
    n_head: int = 6 # number of query heads
    n_kv_head: int = 6 # number of key/value heads (MQA)
    n_embd: int = 768
def norm(x):
    # Purely functional rmsnorm with no learnable params
    return F.rms_norm(x, (x.size(-1),))
def apply_rotary_emb(x, cos, sin):
    assert x.ndim == 4  # multihead attention
    d = x.shape[3] // 2
    x1, x2 = x[..., :d], x[..., d:] # split up last time into two halves
    y1 = x1 * cos + x2 * sin # rotate pairs of dims
    y2 = x1 * (-sin) + x2 * cos
    out = torch.cat([y1, y2], 3) # re-assemble
    out = out.to(x.dtype) # ensure input/output dtypes match
    return out
def repeat_kv(x, n_rep):
    """torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
    if n_rep == 1:
        return x
    bs, n_kv_heads, slen, head_dim = x.shape
    return (
        x[:, :, None, :, :]
        .expand(bs, n_kv_heads, n_rep, slen, head_dim)
        .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
    )
class CausalSelfAttention(nn.Module):
    def __init__(self, config, layer_idx):
        super().__init__()
        self.layer_idx = layer_idx
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
        self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
        self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
    def forward(self, x, cos_sin, kv_cache):
        B, T, C = x.size()
        # Project the input to get queries, keys, and values
        q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
        k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
        v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
        # Apply Rotary Embeddings to queries and keys to get relative positional encoding
        cos, sin = cos_sin
        q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) # QK rotary embedding
        q, k = norm(q), norm(k) # QK norm
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) # make head be batch dim, i.e. (B, T, H, D) -> (B, H, T, D)
        # Apply KV cache: insert current k,v into cache, get the full view so far
        if kv_cache is not None:
            k, v = kv_cache.insert_kv(self.layer_idx, k, v)
        Tq = q.size(2) # number of queries in this forward pass
        Tk = k.size(2) # number of keys/values in total (in the cache + current forward pass)
        # Apply MQA: replicate the key/value heads for each query head
        nrep = self.n_head // self.n_kv_head
        k, v = repeat_kv(k, nrep), repeat_kv(v, nrep)
        # Attention: queries attend to keys/values autoregressively. A few cases to handle:
        if kv_cache is None or Tq == Tk:
            # During training (no KV cache), attend as usual with causal attention
            # And even if there is KV cache, we can still use this simple version when Tq == Tk
            y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        elif Tq == 1:
            # During inference but with a single query in this forward pass:
            # The query has to attend to all the keys/values in the cache
            y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
        else:
            # During inference AND we have a chunk of queries in this forward pass:
            # First, each query attends to all the cached keys/values (i.e. full prefix)
            attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) # True = keep, False = mask
            prefix_len = Tk - Tq
            if prefix_len > 0: # can't be negative but could be zero
                attn_mask[:, :prefix_len] = True
            # Then, causal attention within this chunk
            attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        # Re-assemble the heads side by side and project back to residual stream
        y = y.transpose(1, 2).contiguous().view(B, T, -1)
        y = self.c_proj(y)
        return y
class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
    def forward(self, x):
        x = self.c_fc(x)
        x = F.relu(x).square()
        x = self.c_proj(x)
        return x
class Block(nn.Module):
    def __init__(self, config, layer_idx):
        super().__init__()
        self.attn = CausalSelfAttention(config, layer_idx)
        self.mlp = MLP(config)
    def forward(self, x, cos_sin, kv_cache):
        x = x + self.attn(norm(x), cos_sin, kv_cache)
        x = x + self.mlp(norm(x))
        return x
class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict({
            "wte": nn.Embedding(config.vocab_size, config.n_embd),
            "h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
        })
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        # To support meta device initialization, we init the rotary embeddings here, but it's fake
        # As for rotary_seq_len, these rotary embeddings are pretty small/cheap in memory,
        # so let's just over-compute them, but assert fail if we ever reach that amount.
        # In the future we can dynamically grow the cache, for now it's fine.
        self.rotary_seq_len = config.sequence_len * 10 # 10X over-compute should be enough, TODO make nicer?
        head_dim = config.n_embd // config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.register_buffer("cos", cos, persistent=False) # persistent=False means it's not saved to the checkpoint
        self.register_buffer("sin", sin, persistent=False)
        # Cast the embeddings from fp32 to bf16: optim can tolerate it and it saves memory: both in the model and the activations
        self.transformer.wte.to(dtype=torch.bfloat16)
    def init_weights(self):
        self.apply(self._init_weights)
        # zero out classifier weights
        torch.nn.init.zeros_(self.lm_head.weight)
        # zero out c_proj weights in all blocks
        for block in self.transformer.h:
            torch.nn.init.zeros_(block.mlp.c_proj.weight)
            torch.nn.init.zeros_(block.attn.c_proj.weight)
        # init the rotary embeddings
        head_dim = self.config.n_embd // self.config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.cos, self.sin = cos, sin
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            # https://arxiv.org/pdf/2310.17813
            fan_out = module.weight.size(0)
            fan_in = module.weight.size(1)
            std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)
    # TODO: bump base theta more, e.g. 100K is more common more recently
    def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None):
        # autodetect the device from model embeddings
        if device is None:
            device = self.transformer.wte.weight.device
        # stride the channels
        channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
        inv_freq = 1.0 / (base ** (channel_range / head_dim))
        # stride the time steps
        t = torch.arange(seq_len, dtype=torch.float32, device=device)
        # calculate the rotation frequencies at each (time, channel) pair
        freqs = torch.outer(t, inv_freq)
        cos, sin = freqs.cos(), freqs.sin()
        cos, sin = cos.bfloat16(), sin.bfloat16() # keep them in bfloat16
        cos, sin = cos[None, :, None, :], sin[None, :, None, :] # add batch and head dims for later broadcasting
        return cos, sin
    def get_device(self):
        return self.transformer.wte.weight.device
    def estimate_flops(self):
        """ Return the estimated FLOPs per token for the model. Ref: https://arxiv.org/abs/2204.02311 """
        nparams = sum(p.numel() for p in self.parameters())
        nparams_embedding = self.transformer.wte.weight.numel()
        l, h, q, t = self.config.n_layer, self.config.n_head, self.config.n_embd // self.config.n_head, self.config.sequence_len
        num_flops_per_token = 6 * (nparams - nparams_embedding) + 12 * l * h * q * t
        return num_flops_per_token
    def setup_optimizers(self, unembedding_lr=0.004, embedding_lr=0.2, matrix_lr=0.02, weight_decay=0.0):
        model_dim = self.config.n_embd
        ddp, rank, local_rank, world_size = get_dist_info()
        # Separate out all parameters into 3 groups (matrix, embedding, lm_head)
        matrix_params = list(self.transformer.h.parameters())
        embedding_params = list(self.transformer.wte.parameters())
        lm_head_params = list(self.lm_head.parameters())
        assert len(list(self.parameters())) == len(matrix_params) + len(embedding_params) + len(lm_head_params)
        # Create the AdamW optimizer for the embedding and lm_head
        # Scale the LR for the AdamW parameters by ∝1/√dmodel (having tuned the LRs for 768 dim model)
        dmodel_lr_scale = (model_dim / 768) ** -0.5
        if rank == 0:
            print(f"Scaling the LR for the AdamW parameters ∝1/√({model_dim}/768) = {dmodel_lr_scale:.6f}")
        adam_groups = [
            dict(params=lm_head_params, lr=unembedding_lr * dmodel_lr_scale),
            dict(params=embedding_params, lr=embedding_lr * dmodel_lr_scale),
        ]
        adamw_kwargs = dict(betas=(0.8, 0.95), eps=1e-10, weight_decay=weight_decay)
        AdamWFactory = DistAdamW if ddp else partial(torch.optim.AdamW, fused=True)
        adamw_optimizer = AdamWFactory(adam_groups, **adamw_kwargs)
        # Create the Muon optimizer for the linear layers
        muon_kwargs = dict(lr=matrix_lr, momentum=0.95)
        MuonFactory = DistMuon if ddp else Muon
        muon_optimizer = MuonFactory(matrix_params, **muon_kwargs)
        # Combine them the two optimizers into one list
        optimizers = [adamw_optimizer, muon_optimizer]
        for opt in optimizers:
            for group in opt.param_groups:
                group["initial_lr"] = group["lr"]
        return optimizers
    def forward(self, idx, targets=None, kv_cache=None, loss_reduction='mean'):
        B, T = idx.size()
        # Grab the rotary embeddings for the current sequence length (they are of shape (1, seq_len, 1, head_dim))
        assert T <= self.cos.size(1), f"Sequence length grew beyond the rotary embeddings cache: {T} > {self.cos.size(1)}"
        assert idx.device == self.cos.device, f"Rotary embeddings and idx are on different devices: {idx.device} != {self.cos.device}"
        assert self.cos.dtype == torch.bfloat16, "Rotary embeddings must be in bfloat16"
        # if kv cache exists, we need to offset the rotary embeddings to the current position in the cache
        T0 = 0 if kv_cache is None else kv_cache.get_pos()
        cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] # truncate cache to current sequence length
        # Forward the trunk of the Transformer
        x = self.transformer.wte(idx)
        x = norm(x)
        for block in self.transformer.h:
            x = block(x, cos_sin, kv_cache)
        x = norm(x)
        # Forward the lm_head (compute logits)
        softcap = 15
        if targets is not None:
            # training mode: compute and return the loss
            # TODO: experiment with Liger Kernels / chunked cross-entropy etc.
            logits = self.lm_head(x)
            logits = softcap * torch.tanh(logits / softcap) # logits softcap
            logits = logits.float() # use tf32/fp32 for logits
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction)
            return loss
        else:
            # inference mode: compute and return the logits
            logits = self.lm_head(x)
            logits = softcap * torch.tanh(logits / softcap) # logits softcap
            return logits
    @torch.inference_mode()
    def generate(self, tokens, max_tokens, temperature=1.0, top_k=None, seed=42):
        """
        Naive autoregressive streaming inference.
        To make it super simple, let's assume:
        - batch size is 1
        - ids and the yielded tokens are simple Python lists and ints
        """
        assert isinstance(tokens, list)
        device = self.get_device()
        rng = None
        if temperature > 0:
            rng = torch.Generator(device=device)
            rng.manual_seed(seed)
        ids = torch.tensor([tokens], dtype=torch.long, device=device) # add batch dim
        for _ in range(max_tokens):
            logits = self.forward(ids) # (B, T, vocab_size)
            logits = logits[:, -1, :] # (B, vocab_size)
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            if temperature > 0:
                logits = logits / temperature
                probs = F.softmax(logits, dim=-1)
                next_ids = torch.multinomial(probs, num_samples=1, generator=rng)
            else:
                next_ids = torch.argmax(logits, dim=-1, keepdim=True)
            ids = torch.cat((ids, next_ids), dim=1)
            token = next_ids.item()
            yield token
 |