File size: 14,983 Bytes
4d308e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
GPT model (rewrite, a lot simpler)
Notable features:
- rotary embeddings (and no positional embeddings)
- QK norm
- untied weights for token embedding and lm_head
- relu^2 activation in MLP
- norm after token embedding
- no learnable params in rmsnorm
- no bias in linear layers
- Multi-Query Attention (MQA) support for more efficient inference
"""

import math
from functools import partial
from dataclasses import dataclass

import torch
import torch.nn as nn
import torch.nn.functional as F

from nanochat.common import get_dist_info, print0
from nanochat.muon import Muon, DistMuon
from nanochat.adamw import DistAdamW

@dataclass
class GPTConfig:
    sequence_len: int = 1024
    vocab_size: int = 50304
    n_layer: int = 12
    n_head: int = 6 # number of query heads
    n_kv_head: int = 6 # number of key/value heads (MQA)
    n_embd: int = 768


def norm(x):
    # Purely functional rmsnorm with no learnable params
    return F.rms_norm(x, (x.size(-1),))


def apply_rotary_emb(x, cos, sin):
    assert x.ndim == 4  # multihead attention
    d = x.shape[3] // 2
    x1, x2 = x[..., :d], x[..., d:] # split up last time into two halves
    y1 = x1 * cos + x2 * sin # rotate pairs of dims
    y2 = x1 * (-sin) + x2 * cos
    out = torch.cat([y1, y2], 3) # re-assemble
    out = out.to(x.dtype) # ensure input/output dtypes match
    return out


def repeat_kv(x, n_rep):
    """torch.repeat_interleave(x, dim=1, repeats=n_rep)"""
    if n_rep == 1:
        return x
    bs, n_kv_heads, slen, head_dim = x.shape
    return (
        x[:, :, None, :, :]
        .expand(bs, n_kv_heads, n_rep, slen, head_dim)
        .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
    )


class CausalSelfAttention(nn.Module):
    def __init__(self, config, layer_idx):
        super().__init__()
        self.layer_idx = layer_idx
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
        self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
        self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)

    def forward(self, x, cos_sin, kv_cache):
        B, T, C = x.size()

        # Project the input to get queries, keys, and values
        q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
        k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
        v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)

        # Apply Rotary Embeddings to queries and keys to get relative positional encoding
        cos, sin = cos_sin
        q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) # QK rotary embedding
        q, k = norm(q), norm(k) # QK norm
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) # make head be batch dim, i.e. (B, T, H, D) -> (B, H, T, D)

        # Apply KV cache: insert current k,v into cache, get the full view so far
        if kv_cache is not None:
            k, v = kv_cache.insert_kv(self.layer_idx, k, v)
        Tq = q.size(2) # number of queries in this forward pass
        Tk = k.size(2) # number of keys/values in total (in the cache + current forward pass)

        # Apply MQA: replicate the key/value heads for each query head
        nrep = self.n_head // self.n_kv_head
        k, v = repeat_kv(k, nrep), repeat_kv(v, nrep)

        # Attention: queries attend to keys/values autoregressively. A few cases to handle:
        if kv_cache is None or Tq == Tk:
            # During training (no KV cache), attend as usual with causal attention
            # And even if there is KV cache, we can still use this simple version when Tq == Tk
            y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        elif Tq == 1:
            # During inference but with a single query in this forward pass:
            # The query has to attend to all the keys/values in the cache
            y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
        else:
            # During inference AND we have a chunk of queries in this forward pass:
            # First, each query attends to all the cached keys/values (i.e. full prefix)
            attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) # True = keep, False = mask
            prefix_len = Tk - Tq
            if prefix_len > 0: # can't be negative but could be zero
                attn_mask[:, :prefix_len] = True
            # Then, causal attention within this chunk
            attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)

        # Re-assemble the heads side by side and project back to residual stream
        y = y.transpose(1, 2).contiguous().view(B, T, -1)
        y = self.c_proj(y)
        return y


class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)

    def forward(self, x):
        x = self.c_fc(x)
        x = F.relu(x).square()
        x = self.c_proj(x)
        return x


class Block(nn.Module):
    def __init__(self, config, layer_idx):
        super().__init__()
        self.attn = CausalSelfAttention(config, layer_idx)
        self.mlp = MLP(config)

    def forward(self, x, cos_sin, kv_cache):
        x = x + self.attn(norm(x), cos_sin, kv_cache)
        x = x + self.mlp(norm(x))
        return x


class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict({
            "wte": nn.Embedding(config.vocab_size, config.n_embd),
            "h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
        })
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        # To support meta device initialization, we init the rotary embeddings here, but it's fake
        # As for rotary_seq_len, these rotary embeddings are pretty small/cheap in memory,
        # so let's just over-compute them, but assert fail if we ever reach that amount.
        # In the future we can dynamically grow the cache, for now it's fine.
        self.rotary_seq_len = config.sequence_len * 10 # 10X over-compute should be enough, TODO make nicer?
        head_dim = config.n_embd // config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.register_buffer("cos", cos, persistent=False) # persistent=False means it's not saved to the checkpoint
        self.register_buffer("sin", sin, persistent=False)
        # Cast the embeddings from fp32 to bf16: optim can tolerate it and it saves memory: both in the model and the activations
        self.transformer.wte.to(dtype=torch.bfloat16)

    def init_weights(self):
        self.apply(self._init_weights)
        # zero out classifier weights
        torch.nn.init.zeros_(self.lm_head.weight)
        # zero out c_proj weights in all blocks
        for block in self.transformer.h:
            torch.nn.init.zeros_(block.mlp.c_proj.weight)
            torch.nn.init.zeros_(block.attn.c_proj.weight)
        # init the rotary embeddings
        head_dim = self.config.n_embd // self.config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.cos, self.sin = cos, sin

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            # https://arxiv.org/pdf/2310.17813
            fan_out = module.weight.size(0)
            fan_in = module.weight.size(1)
            std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)

    # TODO: bump base theta more, e.g. 100K is more common more recently
    def _precompute_rotary_embeddings(self, seq_len, head_dim, base=10000, device=None):
        # autodetect the device from model embeddings
        if device is None:
            device = self.transformer.wte.weight.device
        # stride the channels
        channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
        inv_freq = 1.0 / (base ** (channel_range / head_dim))
        # stride the time steps
        t = torch.arange(seq_len, dtype=torch.float32, device=device)
        # calculate the rotation frequencies at each (time, channel) pair
        freqs = torch.outer(t, inv_freq)
        cos, sin = freqs.cos(), freqs.sin()
        cos, sin = cos.bfloat16(), sin.bfloat16() # keep them in bfloat16
        cos, sin = cos[None, :, None, :], sin[None, :, None, :] # add batch and head dims for later broadcasting
        return cos, sin

    def get_device(self):
        return self.transformer.wte.weight.device

    def estimate_flops(self):
        """ Return the estimated FLOPs per token for the model. Ref: https://arxiv.org/abs/2204.02311 """
        nparams = sum(p.numel() for p in self.parameters())
        nparams_embedding = self.transformer.wte.weight.numel()
        l, h, q, t = self.config.n_layer, self.config.n_head, self.config.n_embd // self.config.n_head, self.config.sequence_len
        num_flops_per_token = 6 * (nparams - nparams_embedding) + 12 * l * h * q * t
        return num_flops_per_token

    def setup_optimizers(self, unembedding_lr=0.004, embedding_lr=0.2, matrix_lr=0.02, weight_decay=0.0):
        model_dim = self.config.n_embd
        ddp, rank, local_rank, world_size = get_dist_info()
        # Separate out all parameters into 3 groups (matrix, embedding, lm_head)
        matrix_params = list(self.transformer.h.parameters())
        embedding_params = list(self.transformer.wte.parameters())
        lm_head_params = list(self.lm_head.parameters())
        assert len(list(self.parameters())) == len(matrix_params) + len(embedding_params) + len(lm_head_params)
        # Create the AdamW optimizer for the embedding and lm_head
        # Scale the LR for the AdamW parameters by ∝1/√dmodel (having tuned the LRs for 768 dim model)
        dmodel_lr_scale = (model_dim / 768) ** -0.5
        if rank == 0:
            print(f"Scaling the LR for the AdamW parameters ∝1/√({model_dim}/768) = {dmodel_lr_scale:.6f}")
        adam_groups = [
            dict(params=lm_head_params, lr=unembedding_lr * dmodel_lr_scale),
            dict(params=embedding_params, lr=embedding_lr * dmodel_lr_scale),
        ]
        adamw_kwargs = dict(betas=(0.8, 0.95), eps=1e-10, weight_decay=weight_decay)
        AdamWFactory = DistAdamW if ddp else partial(torch.optim.AdamW, fused=True)
        adamw_optimizer = AdamWFactory(adam_groups, **adamw_kwargs)
        # Create the Muon optimizer for the linear layers
        muon_kwargs = dict(lr=matrix_lr, momentum=0.95)
        MuonFactory = DistMuon if ddp else Muon
        muon_optimizer = MuonFactory(matrix_params, **muon_kwargs)
        # Combine them the two optimizers into one list
        optimizers = [adamw_optimizer, muon_optimizer]
        for opt in optimizers:
            for group in opt.param_groups:
                group["initial_lr"] = group["lr"]
        return optimizers

    def forward(self, idx, targets=None, kv_cache=None, loss_reduction='mean'):
        B, T = idx.size()

        # Grab the rotary embeddings for the current sequence length (they are of shape (1, seq_len, 1, head_dim))
        assert T <= self.cos.size(1), f"Sequence length grew beyond the rotary embeddings cache: {T} > {self.cos.size(1)}"
        assert idx.device == self.cos.device, f"Rotary embeddings and idx are on different devices: {idx.device} != {self.cos.device}"
        assert self.cos.dtype == torch.bfloat16, "Rotary embeddings must be in bfloat16"
        # if kv cache exists, we need to offset the rotary embeddings to the current position in the cache
        T0 = 0 if kv_cache is None else kv_cache.get_pos()
        cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] # truncate cache to current sequence length

        # Forward the trunk of the Transformer
        x = self.transformer.wte(idx)
        x = norm(x)
        for block in self.transformer.h:
            x = block(x, cos_sin, kv_cache)
        x = norm(x)

        # Forward the lm_head (compute logits)
        softcap = 15
        if targets is not None:
            # training mode: compute and return the loss
            # TODO: experiment with Liger Kernels / chunked cross-entropy etc.
            logits = self.lm_head(x)
            logits = softcap * torch.tanh(logits / softcap) # logits softcap
            logits = logits.float() # use tf32/fp32 for logits
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction)
            return loss
        else:
            # inference mode: compute and return the logits
            logits = self.lm_head(x)
            logits = softcap * torch.tanh(logits / softcap) # logits softcap
            return logits

    @torch.inference_mode()
    def generate(self, tokens, max_tokens, temperature=1.0, top_k=None, seed=42):
        """
        Naive autoregressive streaming inference.
        To make it super simple, let's assume:
        - batch size is 1
        - ids and the yielded tokens are simple Python lists and ints
        """
        assert isinstance(tokens, list)
        device = self.get_device()
        rng = None
        if temperature > 0:
            rng = torch.Generator(device=device)
            rng.manual_seed(seed)
        ids = torch.tensor([tokens], dtype=torch.long, device=device) # add batch dim
        for _ in range(max_tokens):
            logits = self.forward(ids) # (B, T, vocab_size)
            logits = logits[:, -1, :] # (B, vocab_size)
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            if temperature > 0:
                logits = logits / temperature
                probs = F.softmax(logits, dim=-1)
                next_ids = torch.multinomial(probs, num_samples=1, generator=rng)
            else:
                next_ids = torch.argmax(logits, dim=-1, keepdim=True)
            ids = torch.cat((ids, next_ids), dim=1)
            token = next_ids.item()
            yield token