Spaces:
Runtime error
Runtime error
File size: 7,579 Bytes
c29ec17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
def norm(x: torch.Tensor) -> torch.Tensor:
return F.rms_norm(x, (x.size(-1),))
def apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
assert x.ndim == 4
d = x.shape[3] // 2
x1, x2 = x[..., :d], x[..., d:]
y1 = x1 * cos + x2 * sin
y2 = x1 * (-sin) + x2 * cos
out = torch.cat([y1, y2], 3)
out = out.to(x.dtype)
return out
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
if n_rep == 1:
return x
bs, n_kv_heads, slen, head_dim = x.shape
return (
x[:, :, None, :, :]
.expand(bs, n_kv_heads, n_rep, slen, head_dim)
.reshape(bs, n_kv_heads * n_rep, slen, head_dim)
)
@dataclass
class GPTConfig:
sequence_len: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 6
n_kv_head: int = 6
n_embd: int = 768
class CausalSelfAttention(nn.Module):
def __init__(self, config: GPTConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.n_head = config.n_head
self.n_kv_head = config.n_kv_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)
def forward(self, x: torch.Tensor, cos_sin, kv_cache=None):
B, T, C = x.size()
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
cos, sin = cos_sin
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
q, k = norm(q), norm(k)
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if kv_cache is not None:
k, v = kv_cache.insert_kv(self.layer_idx, k, v)
Tq = q.size(2)
Tk = k.size(2)
nrep = self.n_head // self.n_kv_head
k, v = repeat_kv(k, nrep), repeat_kv(v, nrep)
if kv_cache is None or Tq == Tk:
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
elif Tq == 1:
y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
else:
attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device)
prefix_len = Tk - Tq
if prefix_len > 0:
attn_mask[:, :prefix_len] = True
attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
y = y.transpose(1, 2).contiguous().view(B, T, -1)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.c_fc(x)
x = F.relu(x).square()
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config: GPTConfig, layer_idx: int):
super().__init__()
self.attn = CausalSelfAttention(config, layer_idx)
self.mlp = MLP(config)
def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
x = x + self.attn(norm(x), cos_sin, kv_cache)
x = x + self.mlp(norm(x))
return x
class GPT(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict({
'wte': nn.Embedding(config.vocab_size, config.n_embd),
'h': nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
})
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.rotary_seq_len = config.sequence_len * 10
head_dim = config.n_embd // config.n_head
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
self.register_buffer('cos', cos, persistent=False)
self.register_buffer('sin', sin, persistent=False)
self.transformer.wte.to(dtype=torch.bfloat16)
def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None):
if device is None:
device = self.transformer.wte.weight.device
channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
inv_freq = 1.0 / (base ** (channel_range / head_dim))
t = torch.arange(seq_len, dtype=torch.float32, device=device)
freqs = torch.outer(t, inv_freq)
cos, sin = freqs.cos(), freqs.sin()
cos, sin = cos.bfloat16(), sin.bfloat16()
cos, sin = cos[None, :, None, :], sin[None, :, None, :]
return cos, sin
def forward(self, idx: torch.Tensor, targets: torch.Tensor | None = None, kv_cache=None, loss_reduction: str = 'mean'):
B, T = idx.size()
assert T <= self.cos.size(1)
assert idx.device == self.cos.device
assert self.cos.dtype == torch.bfloat16
T0 = 0 if kv_cache is None else kv_cache.get_pos()
cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T]
x = self.transformer.wte(idx)
x = norm(x)
for block in self.transformer.h:
x = block(x, cos_sin, kv_cache)
x = norm(x)
softcap = 15
if targets is not None:
logits = self.lm_head(x)
logits = softcap * torch.tanh(logits / softcap)
logits = logits.float()
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction)
return loss
else:
logits = self.lm_head(x)
logits = softcap * torch.tanh(logits / softcap)
return logits
@torch.inference_mode()
def generate(self, tokens: list[int], max_tokens: int, temperature: float = 1.0, top_k: int | None = None, seed: int = 42):
assert isinstance(tokens, list)
device = self.transformer.wte.weight.device
rng = None
if temperature > 0:
rng = torch.Generator(device=device)
rng.manual_seed(seed)
ids = torch.tensor([tokens], dtype=torch.long, device=device)
for _ in range(max_tokens):
logits = self.forward(ids)
logits = logits[:, -1, :]
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
if temperature > 0:
logits = logits / max(temperature, 1e-6)
probs = F.softmax(logits, dim=-1)
next_ids = torch.multinomial(probs, num_samples=1, generator=rng)
else:
next_ids = torch.argmax(logits, dim=-1, keepdim=True)
ids = torch.cat((ids, next_ids), dim=1)
yield next_ids.item()
|