File size: 7,579 Bytes
c29ec17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass


def norm(x: torch.Tensor) -> torch.Tensor:
    return F.rms_norm(x, (x.size(-1),))


def apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
    assert x.ndim == 4
    d = x.shape[3] // 2
    x1, x2 = x[..., :d], x[..., d:]
    y1 = x1 * cos + x2 * sin
    y2 = x1 * (-sin) + x2 * cos
    out = torch.cat([y1, y2], 3)
    out = out.to(x.dtype)
    return out


def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    if n_rep == 1:
        return x
    bs, n_kv_heads, slen, head_dim = x.shape
    return (
        x[:, :, None, :, :]
        .expand(bs, n_kv_heads, n_rep, slen, head_dim)
        .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
    )


@dataclass
class GPTConfig:
    sequence_len: int = 1024
    vocab_size: int = 50304
    n_layer: int = 12
    n_head: int = 6
    n_kv_head: int = 6
    n_embd: int = 768


class CausalSelfAttention(nn.Module):
    def __init__(self, config: GPTConfig, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0
        self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
        self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)

    def forward(self, x: torch.Tensor, cos_sin, kv_cache=None):
        B, T, C = x.size()
        q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
        k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim)
        v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim)
        cos, sin = cos_sin
        q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
        q, k = norm(q), norm(k)
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
        if kv_cache is not None:
            k, v = kv_cache.insert_kv(self.layer_idx, k, v)
        Tq = q.size(2)
        Tk = k.size(2)
        nrep = self.n_head // self.n_kv_head
        k, v = repeat_kv(k, nrep), repeat_kv(v, nrep)
        if kv_cache is None or Tq == Tk:
            y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        elif Tq == 1:
            y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
        else:
            attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device)
            prefix_len = Tk - Tq
            if prefix_len > 0:
                attn_mask[:, :prefix_len] = True
            attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device))
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        y = y.transpose(1, 2).contiguous().view(B, T, -1)
        y = self.c_proj(y)
        return y


class MLP(nn.Module):
    def __init__(self, config: GPTConfig):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.c_fc(x)
        x = F.relu(x).square()
        x = self.c_proj(x)
        return x


class Block(nn.Module):
    def __init__(self, config: GPTConfig, layer_idx: int):
        super().__init__()
        self.attn = CausalSelfAttention(config, layer_idx)
        self.mlp = MLP(config)

    def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor:
        x = x + self.attn(norm(x), cos_sin, kv_cache)
        x = x + self.mlp(norm(x))
        return x


class GPT(nn.Module):
    def __init__(self, config: GPTConfig):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict({
            'wte': nn.Embedding(config.vocab_size, config.n_embd),
            'h': nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]),
        })
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.rotary_seq_len = config.sequence_len * 10
        head_dim = config.n_embd // config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.register_buffer('cos', cos, persistent=False)
        self.register_buffer('sin', sin, persistent=False)
        self.transformer.wte.to(dtype=torch.bfloat16)

    def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None):
        if device is None:
            device = self.transformer.wte.weight.device
        channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
        inv_freq = 1.0 / (base ** (channel_range / head_dim))
        t = torch.arange(seq_len, dtype=torch.float32, device=device)
        freqs = torch.outer(t, inv_freq)
        cos, sin = freqs.cos(), freqs.sin()
        cos, sin = cos.bfloat16(), sin.bfloat16()
        cos, sin = cos[None, :, None, :], sin[None, :, None, :]
        return cos, sin

    def forward(self, idx: torch.Tensor, targets: torch.Tensor | None = None, kv_cache=None, loss_reduction: str = 'mean'):
        B, T = idx.size()
        assert T <= self.cos.size(1)
        assert idx.device == self.cos.device
        assert self.cos.dtype == torch.bfloat16
        T0 = 0 if kv_cache is None else kv_cache.get_pos()
        cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T]
        x = self.transformer.wte(idx)
        x = norm(x)
        for block in self.transformer.h:
            x = block(x, cos_sin, kv_cache)
        x = norm(x)
        softcap = 15
        if targets is not None:
            logits = self.lm_head(x)
            logits = softcap * torch.tanh(logits / softcap)
            logits = logits.float()
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1, reduction=loss_reduction)
            return loss
        else:
            logits = self.lm_head(x)
            logits = softcap * torch.tanh(logits / softcap)
            return logits

    @torch.inference_mode()
    def generate(self, tokens: list[int], max_tokens: int, temperature: float = 1.0, top_k: int | None = None, seed: int = 42):
        assert isinstance(tokens, list)
        device = self.transformer.wte.weight.device
        rng = None
        if temperature > 0:
            rng = torch.Generator(device=device)
            rng.manual_seed(seed)
        ids = torch.tensor([tokens], dtype=torch.long, device=device)
        for _ in range(max_tokens):
            logits = self.forward(ids)
            logits = logits[:, -1, :]
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            if temperature > 0:
                logits = logits / max(temperature, 1e-6)
                probs = F.softmax(logits, dim=-1)
                next_ids = torch.multinomial(probs, num_samples=1, generator=rng)
            else:
                next_ids = torch.argmax(logits, dim=-1, keepdim=True)
            ids = torch.cat((ids, next_ids), dim=1)
            yield next_ids.item()