File size: 6,816 Bytes
a4b70d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from __future__ import annotations

import json

from ..typing import AsyncResult, Messages
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin
from ..requests import StreamSession, get_args_from_nodriver, raise_for_status, merge_cookies
from ..requests import DEFAULT_HEADERS, has_nodriver, has_curl_cffi
from ..providers.response import FinishReason, Usage
from ..errors import ResponseStatusError, ModelNotFoundError
from .. import debug
from .helper import render_messages

def clean_name(name: str) -> str:
    return name.split("/")[-1].replace(
        "-instruct", "").replace(
        "-17b-16e", "").replace(
        "-chat", "").replace(
        "-fp8", "").replace(
        "-fast", "").replace(
        "-int8", "").replace(
        "-awq", "").replace(
        "-qvq", "").replace(
        "-r1", "").replace(
        "meta-llama-", "llama-").replace(
        "-it", "").replace(
        "qwen-", "qwen").replace(
        "qwen", "qwen-")

# models = []
# model_aliases = {clean_name(m.get("name")): m.get("name") for m in models}
# open(__file__, "a").write(f"""# Generated by g4f.models.cloudflare.py
# model_aliases = {model_aliases}
# """)

class Cloudflare(AsyncGeneratorProvider, ProviderModelMixin, AuthFileMixin):
    label = "Cloudflare AI"
    url = "https://playground.ai.cloudflare.com"
    working = has_curl_cffi
    use_nodriver = True
    active_by_default = True
    api_endpoint = "https://playground.ai.cloudflare.com/api/inference"
    models_url = "https://playground.ai.cloudflare.com/api/models"
    supports_stream = True
    supports_system_message = True
    supports_message_history = True
    default_model = 'llama-3.3-70b'
    model_aliases = {
        'deepseek-coder-6.7b-base': '@hf/thebloke/deepseek-coder-6.7b-base-awq',
        'deepseek-coder-6.7b': '@hf/thebloke/deepseek-coder-6.7b-instruct-awq',
        'deepseek-math-7b': '@cf/deepseek-ai/deepseek-math-7b-instruct',
        'deepseek-distill-qwen-32b': '@cf/deepseek-ai/deepseek-r1-distill-qwen-32b',
        'discolm-german-7b-v1': '@cf/thebloke/discolm-german-7b-v1-awq',
        'falcon-7b': '@cf/tiiuae/falcon-7b-instruct',
        'gemma-3-12b': '@cf/google/gemma-3-12b-it',
        'gemma-7b': '@hf/google/gemma-7b-it',
        'hermes-2-pro-mistral-7b': '@hf/nousresearch/hermes-2-pro-mistral-7b',
        'llama-2-13b': '@hf/thebloke/llama-2-13b-chat-awq',
        'llama-2-7b-fp16': '@cf/meta/llama-2-7b-chat-fp16',
        'llama-2-7b': '@cf/meta/llama-2-7b-chat-int8',
        'llama-3-8b': '@hf/meta-llama/meta-llama-3-8b-instruct',
        'llama-3.1-8b': '@cf/meta/llama-3.1-8b-instruct-fp8',
        'llama-3.2-11b-vision': '@cf/meta/llama-3.2-11b-vision-instruct',
        'llama-3.2-1b': '@cf/meta/llama-3.2-1b-instruct',
        'llama-3.2-3b': '@cf/meta/llama-3.2-3b-instruct',
        'llama-3.3-70b': '@cf/meta/llama-3.3-70b-instruct-fp8-fast',
        'llama-4-scout': '@cf/meta/llama-4-scout-17b-16e-instruct',
        'llama-guard-3-8b': '@cf/meta/llama-guard-3-8b',
        'llamaguard-7b': '@hf/thebloke/llamaguard-7b-awq',
        'mistral-7b-v0.1': '@hf/thebloke/mistral-7b-instruct-v0.1-awq',
        'mistral-7b-v0.2': '@hf/mistral/mistral-7b-instruct-v0.2',
        'mistral-small-3.1-24b': '@cf/mistralai/mistral-small-3.1-24b-instruct',
        'neural-7b-v3-1': '@hf/thebloke/neural-chat-7b-v3-1-awq',
        'openchat-3.5-0106': '@cf/openchat/openchat-3.5-0106',
        'openhermes-2.5-mistral-7b': '@hf/thebloke/openhermes-2.5-mistral-7b-awq',
        'phi-2': '@cf/microsoft/phi-2',
        'qwen1.5-0.5b': '@cf/qwen/qwen1.5-0.5b-chat',
        'qwen-1.5-1.8b': '@cf/qwen/qwen1.5-1.8b-chat',
        'qwen-1.5-14b': '@cf/qwen/qwen1.5-14b-chat-awq',
        'qwen-1.5-7b': '@cf/qwen/qwen1.5-7b-chat-awq',
        'qwen-2.5-coder-32b': '@cf/qwen/qwen2.5-coder-32b-instruct',
        'qwq-32b': '@cf/qwen/qwq-32b',
        'sqlcoder-7b-2': '@cf/defog/sqlcoder-7b-2',
        'starling-lm-7b-beta': '@hf/nexusflow/starling-lm-7b-beta',
        'tinyllama-1.1b-v1.0': '@cf/tinyllama/tinyllama-1.1b-chat-v1.0',
        'una-cybertron-7b-v2-bf16': '@cf/fblgit/una-cybertron-7b-v2-bf16',
        'zephyr-7b-beta': '@hf/thebloke/zephyr-7b-beta-awq'
    }
    models = list(model_aliases.keys())
    _args: dict = None

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        max_tokens: int = 2048,
        **kwargs
    ) -> AsyncResult:
        cache_file = cls.get_cache_file()
        if cls._args is None:
            headers = DEFAULT_HEADERS.copy()
            headers["referer"] = f"{cls.url}"
            headers["origin"] = cls.url
            if cache_file.exists():
                with cache_file.open("r") as f:
                    cls._args = json.load(f)
            elif has_nodriver:
                try:
                    cls._args = await get_args_from_nodriver(cls.url, proxy=proxy)
                except (RuntimeError, FileNotFoundError) as e:
                    debug.log(f"Cloudflare: Nodriver is not available:", e)
                    cls._args = {"headers": headers, "cookies": {}, "impersonate": "chrome"}
            else:
                cls._args = {"headers": headers, "cookies": {}, "impersonate": "chrome"}
        try:
            model = cls.get_model(model)
        except ModelNotFoundError:
            pass
        data = {
            "messages": [{
                **message,
                "parts": [{"type":"text", "text": message["content"]}]} for message in render_messages(messages)],
            "lora": None,
            "model": model,
            "max_tokens": max_tokens,
            "stream": True,
            "system_message":"You are a helpful assistant",
            "tools":[]
        }
        async with StreamSession(**cls._args) as session:
            async with session.post(
                cls.api_endpoint,
                json=data,
            ) as response:
                cls._args["cookies"] = merge_cookies(cls._args["cookies"] , response)
                try:
                    await raise_for_status(response)
                except ResponseStatusError:
                    cls._args = None
                    if cache_file.exists():
                        cache_file.unlink()
                    raise
                async for line in response.iter_lines():
                    if line.startswith(b'0:'):
                        yield json.loads(line[2:])
                    elif line.startswith(b'e:'):
                        finish = json.loads(line[2:])
                        yield Usage(**finish.get("usage"))
                        yield FinishReason(finish.get("finishReason"))
        with cache_file.open("w") as f:
            json.dump(cls._args, f)