File size: 8,991 Bytes
a4b70d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from __future__ import annotations

import base64
import json
import requests
from typing import Optional
from aiohttp import ClientSession, BaseConnector

from ...typing import AsyncResult, Messages, MediaListType
from ...image import to_bytes, is_data_an_media
from ...errors import MissingAuthError, ModelNotFoundError
from ...requests import raise_for_status, iter_lines
from ...providers.response import Usage, FinishReason
from ...image.copy_images import save_response_media
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import get_connector, to_string, format_media_prompt, get_system_prompt
from ... import debug

class GeminiPro(AsyncGeneratorProvider, ProviderModelMixin):
    label = "Google Gemini API"
    url = "https://ai.google.dev"
    login_url = "https://aistudio.google.com/u/0/apikey"
    api_base = "https://generativelanguage.googleapis.com/v1beta"
    active_by_default = True

    working = True
    supports_message_history = True
    supports_system_message = True
    needs_auth = True

    default_model = "gemini-2.5-flash"
    default_vision_model = default_model
    fallback_models = [
        "gemini-2.0-flash",
        "gemini-2.0-flash-lite",
        "gemini-2.0-flash-thinking-exp",
        "gemini-2.5-flash",
        "gemma-3-1b-it",
        "gemma-3-12b-it",
        "gemma-3-27b-it",
        "gemma-3-4b-it",
        "gemma-3n-e2b-it",
        "gemma-3n-e4b-it",
    ]

    @classmethod
    def get_models(cls, api_key: str = None, api_base: str = api_base) -> list[str]:
        if not api_key:
            return cls.fallback_models
        if not cls.models:
            try:
                url = f"{cls.api_base if not api_base else api_base}/models"
                response = requests.get(url, params={"key": api_key})
                raise_for_status(response)
                data = response.json()
                cls.models = [
                    model.get("name").split("/").pop()
                    for model in data.get("models")
                    if "generateContent" in model.get("supportedGenerationMethods")
                ]
                cls.models.sort()
                cls.live += 1
            except Exception as e:
                debug.error(e)
                if api_key is not None:
                    raise MissingAuthError("Invalid API key")
                return cls.fallback_models
        return cls.models

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        stream: bool = False,
        proxy: str = None,
        api_key: str = None,
        api_base: str = api_base,
        use_auth_header: bool = False,
        media: MediaListType = None,
        tools: Optional[list] = None,
        connector: BaseConnector = None,
        **kwargs
    ) -> AsyncResult:
        if not api_key:
            raise MissingAuthError('Add a "api_key"')

        try:
            model = cls.get_model(model, api_key=api_key, api_base=api_base)
        except ModelNotFoundError:
            pass

        headers = params = None
        if use_auth_header:
            headers = {"Authorization": f"Bearer {api_key}"}
        else:
            params = {"key": api_key}

        method = "streamGenerateContent" if stream else "generateContent"
        url = f"{api_base.rstrip('/')}/models/{model}:{method}"
        async with ClientSession(headers=headers, connector=get_connector(connector, proxy)) as session:
            contents = [
                {
                    "role": "model" if message["role"] == "assistant" else "user",
                    "parts": [{"text": to_string(message["content"])}]
                }
                for message in messages
                if message["role"] not in ["system", "developer"]
            ]
            if media is not None:
                if not contents:
                    contents.append({"role": "user", "parts": []})
                for media_data, filename in media:
                    media_data = to_bytes(media_data)
                    contents[-1]["parts"].append({
                        "inline_data": {
                            "mime_type": is_data_an_media(media_data, filename),
                            "data": base64.b64encode(media_data).decode()
                        }
                    })
            responseModalities = {"responseModalities": ["AUDIO"]} if "tts" in model else {}
            data = {
                "contents": contents,
                "generationConfig": {
                    "stopSequences": kwargs.get("stop"),
                    "temperature": kwargs.get("temperature"),
                    "maxOutputTokens": kwargs.get("max_tokens"),
                    "topP": kwargs.get("top_p"),
                    "topK": kwargs.get("top_k"),
                    **responseModalities,
                },
                 "tools": [{
                    "function_declarations": [{
                        "name": tool["function"]["name"],
                        "description": tool["function"]["description"],
                        "parameters": {
                            "type": "object",
                            "properties": {key: {
                                "type": value["type"],
                                "description": value["title"]
                            } for key, value in tool["function"]["parameters"]["properties"].items()}
                        },
                    } for tool in tools]
                }] if tools else None
            }
            system_prompt = get_system_prompt(messages)
            if system_prompt:
                data["system_instruction"] = {"parts": {"text": system_prompt}}
            async with session.post(url, params=params, json=data) as response:
                if not response.ok:
                    data = await response.json()
                    data = data[0] if isinstance(data, list) else data
                    raise RuntimeError(f"Response {response.status}: {data['error']['message']}")
                if stream:
                    lines = []
                    buffer = b""
                    async for chunk in iter_lines(response.content.iter_any()):
                        buffer += chunk
                        if chunk == b"[{":
                            lines = [b"{"]
                        elif chunk == b"," or chunk == b"]":
                            try:
                                data = json.loads(b"".join(lines))
                                content = data["candidates"][0]["content"]
                                if "parts" in content and content["parts"]:
                                    if "text" in content["parts"][0]:
                                        yield content["parts"][0]["text"]
                                    elif "inlineData" in content["parts"][0]:
                                        async for media in save_response_media(
                                            content["parts"][0]["inlineData"], format_media_prompt(messages)
                                        ):
                                            yield media
                                if "finishReason" in data["candidates"][0]:
                                    yield FinishReason(data["candidates"][0]["finishReason"].lower())
                                usage = data.get("usageMetadata")
                                if usage:
                                    yield Usage(
                                        prompt_tokens=usage.get("promptTokenCount"),
                                        completion_tokens=usage.get("candidatesTokenCount"),
                                        total_tokens=usage.get("totalTokenCount")
                                    )
                            except Exception as e:
                                raise RuntimeError(f"Read chunk failed") from e
                            lines = []
                        else:
                            lines.append(chunk)
                else:
                    data = await response.json()
                    candidate = data["candidates"][0]
                    if "content" in candidate:
                        content = candidate["content"]
                        if "parts" in content and content["parts"]:
                            for part in content["parts"]:
                                if "text" in part:
                                    yield part["text"]
                                elif "inlineData" in part:
                                    async for media in save_response_media(
                                        part["inlineData"], format_media_prompt(messages)
                                    ):
                                        yield media
                    if "finishReason" in candidate:
                        yield FinishReason(candidate["finishReason"].lower())