File size: 29,701 Bytes
a4b70d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
from __future__ import annotations
import random
import json
import uuid
import asyncio
from ...typing import AsyncResult, Messages, MediaListType
from ...requests import StreamSession, StreamResponse, FormData, raise_for_status
from ...providers.response import JsonConversation, FinishReason
from ...tools.media import merge_media
from ...image import to_bytes, is_accepted_format
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import get_last_user_message
from ...errors import ModelNotFoundError, ResponseError
from ... import debug
class LegacyLMArena(AsyncGeneratorProvider, ProviderModelMixin):
label = "LMArena (Legacy)"
url = "https://legacy.lmarena.ai"
api_endpoint = "/queue/join?"
working = False
default_model = "chatgpt-4o-latest-20250326"
models = []
# Models from HAR data (manually added)
har_models = [
"chatgpt-4o-latest-20250326", "gemini-2.5-pro-preview-05-06", "o3-2025-04-16",
"o4-mini-2025-04-16", "qwen3-235b-a22b", "mistral-medium-2505",
"gemini-2.5-flash-preview-04-17", "gpt-4.1-2025-04-14",
"llama-4-maverick-03-26-experimental", "grok-3-preview-02-24",
"claude-3-7-sonnet-20250219", "claude-3-7-sonnet-20250219-thinking-32k",
"deepseek-v3-0324", "llama-4-maverick-17b-128e-instruct",
"llama-4-scout-17b-16e-instruct", "gpt-4.1-mini-2025-04-14",
"gpt-4.1-nano-2025-04-14"
]
# Models from JS data (manually added)
js_models = [
"gemini-2.0-flash-001", "gemini-2.0-flash-lite-preview-02-05",
"gemma-3-27b-it", "gemma-3-12b-it", "gemma-3-4b-it",
"deepseek-r1", "claude-3-5-sonnet-20241022", "o3-mini"
]
# Updated vision models list from JS data
vision_models = [
"gemini-2.5-pro-preview-05-06", "o3-2025-04-16", "o4-mini-2025-04-16",
"mistral-medium-2505", "gemini-2.5-flash-preview-04-17", "gpt-4.1-2025-04-14",
"claude-3-7-sonnet-20250219", "claude-3-7-sonnet-20250219-thinking-32k",
"llama-4-maverick-17b-128e-instruct", "llama-4-scout-17b-16e-instruct",
"gpt-4.1-mini-2025-04-14", "gpt-4.1-nano-2025-04-14", "gemini-2.0-flash-001",
"gemini-2.0-flash-lite-preview-02-05", "gemma-3-27b-it", "claude-3-5-sonnet-20241022",
"gpt-4o-mini-2024-07-18", "gpt-4o-2024-11-20", "gpt-4o-2024-08-06",
"gpt-4o-2024-05-13", "mistral-small-3.1-24b-instruct-2503",
"claude-3-5-sonnet-20240620", "amazon-nova-pro-v1.0", "amazon-nova-lite-v1.0",
"qwen2.5-vl-32b-instruct", "qwen2.5-vl-72b-instruct", "gemini-1.5-pro-002",
"gemini-1.5-flash-002", "gemini-1.5-flash-8b-001", "gemini-1.5-pro-001",
"gemini-1.5-flash-001", "pixtral-large-2411", "step-1o-vision-32k-highres",
"claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229",
"qwen-vl-max-1119", "qwen-vl-max-0809", "reka-core-20240904",
"reka-flash-20240904", "c4ai-aya-vision-32b", "pixtral-12b-2409"
]
model_aliases = {
# Existing aliases
"claude-3.7-sonnet": "claude-3-7-sonnet-20250219",
"claude-3.7-sonnet-thinking": "claude-3-7-sonnet-20250219-thinking-32k",
"gpt-4o": "chatgpt-4o-latest-20250326",
"grok-3": ["early-grok-3", "grok-3-preview-02-24",],
"gemini-2.0-flash-thinking": ["gemini-2.0-flash-thinking-exp-01-21", "gemini-2.0-flash-thinking-exp-1219",],
"gemini-2.0-pro-exp": "gemini-2.0-pro-exp-02-05",
"gemini-2.0-flash": "gemini-2.0-flash-001",
"o1": "o1-2024-12-17",
"qwen-2.5-max": "qwen2.5-max",
"o3": "o3-2025-04-16",
"o4-mini": "o4-mini-2025-04-16",
"gemini-1.5-pro": "gemini-1.5-pro-002",
"grok-2": "grok-2-2024-08-13",
"claude-3.5-sonnet": "claude-3-5-sonnet-20241022",
"qwen-2.5-plus": "qwen2.5-plus-1127",
"gpt-4o-mini": "gpt-4o-mini-2024-07-18",
"gemini-1.5-flash": "gemini-1.5-flash-002",
"llama-3.1-405b": ["llama-3.1-405b-instruct-bf16", "llama-3.1-405b-instruct-fp8",],
"nemotron-70b": "llama-3.1-nemotron-70b-instruct",
"grok-2-mini": "grok-2-mini-2024-08-13",
"qwen-2.5-72b": "qwen2.5-72b-instruct",
"qwen-2.5-vl-32b": "qwen2.5-vl-32b-instruct",
"qwen-2.5-vl-72b": "qwen2.5-vl-72b-instruct",
"gpt-4-turbo": "gpt-4-turbo-2024-04-09",
"llama-3.3-70b": "llama-3.3-70b-instruct",
"nemotron-49b": "llama-3.3-nemotron-49b-super-v1",
"mistral-large": "mistral-large-2411",
"pixtral-large": "pixtral-large-2411",
"gpt-4": "gpt-4-0613",
"gpt-4.1": "gpt-4.1-2025-04-14",
"gpt-4.1-mini": "gpt-4.1-mini-2025-04-14",
"gpt-4.1-nano": "gpt-4.1-nano-2025-04-14",
"llama-3.1-70b": "llama-3.1-70b-instruct",
"nemotron-253b": "llama-3.1-nemotron-ultra-253b-v1",
"claude-3-opus": "claude-3-opus-20240229",
"tulu-3-70b": "llama-3.1-tulu-3-70b",
"claude-3.5-haiku": "claude-3-5-haiku-20241022",
"reka-core": "reka-core-20240904",
"gemma-2-27b": "gemma-2-27b-it",
"gemma-3-27b": "gemma-3-27b-it",
"gemma-3-12b": "gemma-3-12b-it",
"gemma-3-4b": "gemma-3-4b-it",
"deepseek-v2": "deepseek-v2-api-0628",
"qwen-2.5-coder-32b": "qwen2.5-coder-32b-instruct",
"gemma-2-9b": ["gemma-2-9b-it-simpo", "gemma-2-9b-it",],
"command-a": "command-a-03-2025",
"nemotron-51b": "llama-3.1-nemotron-51b-instruct",
"mistral-small-24b": "mistral-small-24b-instruct-2501",
"mistral-small-3.1-24b": "mistral-small-3.1-24b-instruct-2503",
"glm-4": "glm-4-0520",
"llama-3-70b": "llama-3-70b-instruct",
"llama-4-maverick": "llama-4-maverick-17b-128e-instruct",
"llama-4-scout": "llama-4-scout-17b-16e-instruct",
"reka-flash": "reka-flash-20240904",
"phi-4": "phi-4",
"claude-3-sonnet": "claude-3-sonnet-20240229",
"qwen-2-72b": "qwen2-72b-instruct",
"qwen-3-235b": "qwen3-235b-a22b",
"qwen-3-30b": "qwen3-30b-a3b",
"qwen-3-32b": "qwen3-32b",
"tulu-3-8b": "llama-3.1-tulu-3-8b",
"command-r": ["command-r-08-2024", "command-r",],
"codestral": "codestral-2405",
"claude-3-haiku": "claude-3-haiku-20240307",
"llama-3.1-8b": "llama-3.1-8b-instruct",
"qwen-1.5-110b": "qwen1.5-110b-chat",
"qwq-32b": "qwq-32b-preview",
"llama-3-8b": "llama-3-8b-instruct",
"qwen-1.5-72b": "qwen1.5-72b-chat",
"gemma-2-2b": "gemma-2-2b-it",
"qwen-vl-max": ["qwen-vl-max-1119", "qwen-vl-max-0809"],
"gemini-2.5-pro": "gemini-2.5-pro-preview-05-06",
"gemini-2.5-flash": "gemini-2.5-flash-preview-04-17",
"mixtral-8x22b": "mixtral-8x22b-instruct-v0.1",
"qwen-1.5-32b": "qwen1.5-32b-chat",
"qwen-1.5-14b": "qwen1.5-14b-chat",
"qwen-1.5-7b": "qwen1.5-7b-chat",
"qwen-1.5-4b": "qwen1.5-4b-chat",
"mistral-next": "mistral-next",
"phi-3-medium": "phi-3-medium-4k-instruct",
"phi-3-small": "phi-3-small-8k-instruct",
"phi-3-mini": ["phi-3-mini-4k-instruct-june-2024", "phi-3-mini-4k-instruct", "phi-3-mini-128k-instruct"],
"tulu-2-70b": "tulu-2-dpo-70b",
"llama-2-70b": ["llama-2-70b-chat", "llama2-70b-steerlm-chat"],
"llama-2-13b": "llama-2-13b-chat",
"llama-2-7b": "llama-2-7b-chat",
"hermes-2-dpo": "nous-hermes-2-mixtral-8x7b-dpo",
"pplx-7b-online":"pplx-7b-online",
"deepseek-67b": "deepseek-llm-67b-chat",
"openhermes-2.5-7b": "openhermes-2.5-mistral-7b",
"mistral-7b": "mistral-7b-instruct-v0.2",
"llama-3.2-3b": "llama-3.2-3b-instruct",
"llama-3.2-1b": "llama-3.2-1b-instruct",
"codellama-34b": "codellama-34b-instruct",
"codellama-70b": "codellama-70b-instruct",
"qwen-14b": "qwen-14b-chat",
"gpt-3.5-turbo": "gpt-3.5-turbo-1106",
"mixtral-8x7b": "mixtral-8x7b-instruct-v0.1",
"dbrx-instruct": "dbrx-instruct-preview",
}
@classmethod
def get_models(cls):
"""Get models with improved fallback sources"""
if cls.models: # Return cached models if already loaded
return cls.models
try:
# Try to fetch models from Google Storage first
url = "https://storage.googleapis.com/public-arena-no-cors/p2l-explorer/data/overall/arena.json"
import requests
response = requests.get(url, timeout=5)
response.raise_for_status()
data = response.json()
leaderboard_models = [model[0] for model in data.get("leaderboard", [])]
# Combine models from all sources and remove duplicates
all_models = list(set(leaderboard_models + cls.har_models + cls.js_models))
if all_models:
# Ensure default model is at index 0
if cls.default_model in all_models:
all_models.remove(cls.default_model)
all_models.insert(0, cls.default_model)
cls.models = all_models
return cls.models
except Exception as e:
# Log the error and fall back to alternative sources
debug.log(f"Failed to fetch models from Google Storage: {str(e)}")
# Fallback: Use combined har_models and js_models
combined_models = list(set(cls.har_models + cls.js_models))
if combined_models:
if cls.default_model in combined_models:
combined_models.remove(cls.default_model)
combined_models.insert(0, cls.default_model)
cls.models = combined_models
return cls.models
# Final fallback: Use vision_models
models = cls.vision_models.copy()
if cls.default_model not in models:
models.insert(0, cls.default_model)
cls.models = models
return cls.models
@classmethod
def get_model(cls, model: str) -> str:
"""Get the internal model name from the user-provided model name."""
if not model:
return cls.default_model
# Ensure models are loaded
if not cls.models:
cls.get_models()
# Check if the model exists directly in our models list
if model in cls.models:
return model
# Check if there's an alias for this model
if model in cls.model_aliases:
alias = cls.model_aliases[model]
# If the alias is a list, randomly select one of the options
if isinstance(alias, list):
selected_model = random.choice(alias)
debug.log(f"LegacyLMArena: Selected model '{selected_model}' from alias '{model}'")
return selected_model
debug.log(f"LegacyLMArena: Using model '{alias}' for alias '{model}'")
return alias
# If model still not found, check in all available model sources directly
all_available_models = list(set(cls.har_models + cls.js_models + cls.vision_models))
if model in all_available_models:
return model
raise ModelNotFoundError(f"LegacyLMArena: Model {model} not found")
@classmethod
def _build_payloads(cls, model_id: str, session_hash: str, text: str, files: list, max_tokens: int, temperature: float, top_p: float):
"""Build payloads for new conversations"""
first_payload = {
"data": [
None,
model_id,
{"text": text, "files": files},
{
"text_models": [model_id],
"all_text_models": [model_id],
"vision_models": [],
"all_vision_models": [],
"image_gen_models": [],
"all_image_gen_models": [],
"search_models": [],
"all_search_models": [],
"models": [model_id],
"all_models": [model_id],
"arena_type": "text-arena"
}
],
"event_data": None,
"fn_index": 119,
"trigger_id": 159,
"session_hash": session_hash
}
second_payload = {
"data": [],
"event_data": None,
"fn_index": 120,
"trigger_id": 159,
"session_hash": session_hash
}
third_payload = {
"data": [None, temperature, top_p, max_tokens],
"event_data": None,
"fn_index": 121,
"trigger_id": 159,
"session_hash": session_hash
}
return first_payload, second_payload, third_payload
@classmethod
def _build_continuation_payloads(cls, model_id: str, session_hash: str, text: str, max_tokens: int, temperature: float, top_p: float):
"""Renamed from _build_second_payloads for clarity"""
first_payload = {
"data":[None,model_id,text,{
"text_models":[model_id],
"all_text_models":[model_id],
"vision_models":[],
"image_gen_models":[],
"all_image_gen_models":[],
"search_models":[],
"all_search_models":[],
"models":[model_id],
"all_models":[model_id],
"arena_type":"text-arena"}],
"event_data": None,
"fn_index": 122,
"trigger_id": 157,
"session_hash": session_hash
}
second_payload = {
"data": [],
"event_data": None,
"fn_index": 123,
"trigger_id": 157,
"session_hash": session_hash
}
third_payload = {
"data": [None, temperature, top_p, max_tokens],
"event_data": None,
"fn_index": 124,
"trigger_id": 157,
"session_hash": session_hash
}
return first_payload, second_payload, third_payload
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
media: MediaListType = None,
max_tokens: int = 4096,
temperature: float = 0.7,
top_p: float = 1,
conversation: JsonConversation = None,
return_conversation: bool = True,
max_retries: int = 1,
**kwargs
) -> AsyncResult:
async def read_response(response: StreamResponse):
returned_data = ""
async for line in response.iter_lines():
if not line:
continue
# Handle both "data: " prefix and raw JSON
if line.startswith(b"data: "):
line = line[6:]
# Skip empty lines or non-JSON data
line = line.strip()
if not line or line == b"[DONE]":
continue
try:
json_data = json.loads(line)
# Process data based on message type
if json_data.get("msg") == "process_generating":
output_data = json_data.get("output", {}).get("data", [])
if len(output_data) > 1 and output_data[1]:
# Extract content from various response formats
data = output_data[1]
content = None
if isinstance(data, list):
if data and data[0] == "replace" and len(data) > 2:
content = data[2]
elif data and isinstance(data[0], list) and len(data[0]) > 2:
content = data[0][2]
elif isinstance(data, str):
# Handle direct string responses
content = data
if content:
# Clean up content
if isinstance(content, str):
if content.endswith("β"):
content = content[:-1]
if content in ['<span class="cursor"></span> ', 'update', '']:
continue
if content.startswith(returned_data):
content = content[len(returned_data):]
if content:
returned_data += content
yield content
# Process completed messages
elif json_data.get("msg") == "process_completed":
output_data = json_data.get("output", {}).get("data", [])
if len(output_data) > 1:
# Handle both list and direct content
if isinstance(output_data[1], list):
for item in output_data[1]:
if isinstance(item, list) and len(item) > 1:
content = item[1]
elif isinstance(item, str):
content = item
else:
continue
if content and content != returned_data and content != '<span class="cursor"></span> ':
if "**NETWORK ERROR DUE TO HIGH TRAFFIC." in content:
raise ResponseError(content)
if content.endswith("β"):
content = content[:-1]
new_content = content
if content.startswith(returned_data):
new_content = content[len(returned_data):]
if new_content:
returned_data = content
yield new_content
elif isinstance(output_data[1], str) and output_data[1]:
# Direct string content
content = output_data[1]
if content != returned_data:
if content.endswith("β"):
content = content[:-1]
new_content = content
if content.startswith(returned_data):
new_content = content[len(returned_data):]
if new_content:
returned_data = content
yield new_content
# Also check for other message types that might contain content
elif json_data.get("msg") in ["process_starts", "heartbeat"]:
# These are status messages, skip them but don't error
continue
except json.JSONDecodeError:
# Skip non-JSON lines
continue
except Exception as e:
if max_retries == 1:
raise e
debug.log(f"Error parsing response: {str(e)}")
continue
# Get the actual model name
model = cls.get_model(model)
prompt = get_last_user_message(messages)
async with StreamSession(impersonate="chrome") as session:
# Add retry logic for better reliability
retry_count = 0
while retry_count < max_retries:
try:
# Handle new conversation
if conversation is None:
conversation = JsonConversation(session_hash=str(uuid.uuid4()).replace("-", ""))
media_objects = []
# Process media if present
media = list(merge_media(media, messages))
if media:
data = FormData()
for i in range(len(media)):
media[i] = (to_bytes(media[i][0]), media[i][1])
for image, image_name in media:
data.add_field(f"files", image, filename=image_name)
# Upload media files
async with session.post(f"{cls.url}/upload", params={"upload_id": conversation.session_hash}, data=data) as response:
await raise_for_status(response)
image_files = await response.json()
# Format media objects for API request
media_objects = [{
"path": image_file,
"url": f"{cls.url}/file={image_file}",
"orig_name": media[i][1],
"size": len(media[i][0]),
"mime_type": is_accepted_format(media[i][0]),
"meta": {
"_type": "gradio.FileData"
}
} for i, image_file in enumerate(image_files)]
# Build payloads for new conversation
first_payload, second_payload, third_payload = cls._build_payloads(
model, conversation.session_hash, prompt, media_objects,
max_tokens, temperature, top_p
)
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
}
# Send the three required requests with small delays
async with session.post(f"{cls.url}{cls.api_endpoint}", json=first_payload, proxy=proxy, headers=headers) as response:
await raise_for_status(response)
# Small delay between requests
await asyncio.sleep(0.1)
async with session.post(f"{cls.url}{cls.api_endpoint}", json=second_payload, proxy=proxy, headers=headers) as response:
await raise_for_status(response)
await asyncio.sleep(0.1)
async with session.post(f"{cls.url}{cls.api_endpoint}", json=third_payload, proxy=proxy, headers=headers) as response:
await raise_for_status(response)
# Small delay before streaming
await asyncio.sleep(0.2)
# Stream the response
stream_url = f"{cls.url}/queue/data?session_hash={conversation.session_hash}"
async with session.get(stream_url, headers={"Accept": "text/event-stream"}, proxy=proxy) as response:
await raise_for_status(response)
count = 0
has_content = False
# Add timeout for response
try:
async with asyncio.timeout(30): # 30 second timeout
async for chunk in read_response(response):
count += 1
has_content = True
yield chunk
except asyncio.TimeoutError:
if not has_content:
raise RuntimeError("Response timeout - no data received from server")
# Only raise error if we truly got no content
if count == 0 and not has_content:
retry_count += 1
if retry_count < max_retries:
debug.log(f"No response received, retrying... (attempt {retry_count + 1}/{max_retries})")
await asyncio.sleep(1) # Wait before retry
conversation = None # Reset conversation for retry
continue
else:
raise RuntimeError("No response from server after multiple attempts")
# Success - break retry loop
break
# Handle continuation of existing conversation
else:
# Build payloads for conversation continuation
first_payload, second_payload, third_payload = cls._build_continuation_payloads(
model, conversation.session_hash, prompt, max_tokens, temperature, top_p
)
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
}
# Send the three required requests with delays
async with session.post(f"{cls.url}{cls.api_endpoint}", json=first_payload, proxy=proxy, headers=headers) as response:
await raise_for_status(response)
await asyncio.sleep(0.1)
async with session.post(f"{cls.url}{cls.api_endpoint}", json=second_payload, proxy=proxy, headers=headers) as response:
await raise_for_status(response)
await asyncio.sleep(0.1)
async with session.post(f"{cls.url}{cls.api_endpoint}", json=third_payload, proxy=proxy, headers=headers) as response:
await raise_for_status(response)
await asyncio.sleep(0.2)
# Stream the response
stream_url = f"{cls.url}/queue/data?session_hash={conversation.session_hash}"
async with session.get(stream_url, headers={"Accept": "text/event-stream"}, proxy=proxy) as response:
await raise_for_status(response)
count = 0
has_content = False
try:
async with asyncio.timeout(30):
async for chunk in read_response(response):
count += 1
has_content = True
yield chunk
except asyncio.TimeoutError:
if not has_content:
raise RuntimeError("Response timeout - no data received from server")
if count == 0 and not has_content:
raise RuntimeError("No response from server in conversation continuation")
# Success - break retry loop
break
except Exception as e:
if retry_count < max_retries - 1:
retry_count += 1
debug.log(f"Error occurred: {str(e)}, retrying... (attempt {retry_count + 1}/{max_retries})")
await asyncio.sleep(1)
conversation = None # Reset for retry
continue
else:
raise
# Return conversation object for future interactions
if return_conversation and conversation:
yield conversation
# Yield finish reason if we hit token limit
if count >= max_tokens:
yield FinishReason("length")
|