File size: 11,040 Bytes
a4b70d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
from __future__ import annotations

import os
from typing import Optional, List
from time import time

from ..image import extract_data_uri
from ..image.copy_images import get_media_dir
from ..client.helper import filter_markdown
from ..providers.response import Reasoning, ToolCalls, AudioResponse
from .helper import filter_none

try:
    from pydantic import BaseModel, field_serializer
except ImportError:
    class BaseModel():
        @classmethod
        def model_construct(cls, **data):
            new = cls()
            for key, value in data.items():
                setattr(new, key, value)
            return new
    class field_serializer():
        def __init__(self, field_name):
            self.field_name = field_name
        def __call__(self, *args, **kwargs):
            return args[0]

class BaseModel(BaseModel):
    @classmethod
    def model_construct(cls, **data):
        if hasattr(super(), "model_construct"):
            return super().model_construct(**data)
        return cls.construct(**data)

class TokenDetails(BaseModel):
    cached_tokens: int

class UsageModel(BaseModel):
    prompt_tokens: int
    completion_tokens: int
    total_tokens: int
    prompt_tokens_details: TokenDetails
    completion_tokens_details: TokenDetails

    @classmethod
    def model_construct(cls, prompt_tokens=0, completion_tokens=0, total_tokens=0, prompt_tokens_details=None, completion_tokens_details=None, **kwargs):
        return super().model_construct(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
            total_tokens=total_tokens,
            prompt_tokens_details=TokenDetails.model_construct(**prompt_tokens_details if prompt_tokens_details else {"cached_tokens": 0}),
            completion_tokens_details=TokenDetails.model_construct(**completion_tokens_details if completion_tokens_details else {}),
            **kwargs
        )

class ToolFunctionModel(BaseModel):
    name: str
    arguments: str

class ToolCallModel(BaseModel):
    id: str
    type: str
    function: ToolFunctionModel

    @classmethod
    def model_construct(cls, function=None, **kwargs):
        return super().model_construct(
            **kwargs,
            function=ToolFunctionModel.model_construct(**function),
        )

class ChatCompletionChunk(BaseModel):
    id: str
    object: str
    created: int
    model: str
    provider: Optional[str]
    choices: List[ChatCompletionDeltaChoice]
    usage: UsageModel
    conversation: dict

    @classmethod
    def model_construct(
        cls,
        content: str,
        finish_reason: str,
        completion_id: str = None,
        created: int = None,
        usage: UsageModel = None,
        conversation: dict = None
    ):
        return super().model_construct(
            id=f"chatcmpl-{completion_id}" if completion_id else None,
            object="chat.completion.chunk",
            created=created,
            model=None,
            provider=None,
            choices=[ChatCompletionDeltaChoice.model_construct(
                ChatCompletionDelta.model_construct(content),
                finish_reason
            )],
            **filter_none(usage=usage, conversation=conversation)
        )

    @field_serializer('conversation')
    def serialize_conversation(self, conversation: dict):
        if hasattr(conversation, "get_dict"):
            return conversation.get_dict()
        return conversation

class ResponseMessage(BaseModel):
    type: str = "message"
    role: str
    content: list[ResponseMessageContent]

    @classmethod
    def model_construct(cls, content: str):
        return super().model_construct(role="assistant", content=[ResponseMessageContent.model_construct(content)])

class ResponseMessageContent(BaseModel):
    type: str
    text: str

    @classmethod
    def model_construct(cls, text: str):
        return super().model_construct(type="output_text", text=text)

    @field_serializer('text')
    def serialize_text(self, text: str):
        return str(text)

class AudioResponseModel(BaseModel):
    data: str
    transcript: Optional[str] = None

    @classmethod
    def model_construct(cls, data: str, transcript: Optional[str] = None):
        return super().model_construct(data=data, transcript=transcript)

class ChatCompletionMessage(BaseModel):
    role: str
    content: str
    reasoning: Optional[str] = None
    tool_calls: list[ToolCallModel] = None
    audio: AudioResponseModel = None

    @classmethod
    def model_construct(cls, content: str):
        return super().model_construct(role="assistant", content=[ResponseMessageContent.model_construct(content)])

    @classmethod
    def model_construct(cls, content: str, reasoning: list[Reasoning] = None, tool_calls: list = None):
        if isinstance(content, AudioResponse) and content.data.startswith("data:"):
            return super().model_construct(
                role="assistant",
                audio=AudioResponseModel.model_construct(
                    data=content.data.split(",")[-1],
                    transcript=content.transcript
                ),
                content=content
            )
        if reasoning is not None and isinstance(reasoning, list):
            reasoning = "".join([str(content) for content in reasoning])
        return super().model_construct(role="assistant", content=content, **filter_none(tool_calls=tool_calls, reasoning=reasoning))

    @field_serializer('content')
    def serialize_content(self, content: str):
        return str(content)

    def save(self, filepath: str, allowed_types = None):
        if hasattr(self.content, "data"):
            os.rename(self.content.data.replace("/media", get_media_dir()), filepath)
            return
        if self.content.startswith("data:"):
            with open(filepath, "wb") as f:
                f.write(extract_data_uri(self.content))
            return
        content = filter_markdown(self.content, allowed_types, self.content if not allowed_types else None)
        if content is not None:
            with open(filepath, "w") as f:
                f.write(content)


class ChatCompletionChoice(BaseModel):
    index: int
    message: ChatCompletionMessage
    finish_reason: str

    @classmethod
    def model_construct(cls, message: ChatCompletionMessage, finish_reason: str):
        return super().model_construct(index=0, message=message, finish_reason=finish_reason)

class ChatCompletion(BaseModel):
    id: str
    object: str
    created: int
    model: str
    provider: Optional[str]
    choices: list[ChatCompletionChoice]
    usage: UsageModel
    conversation: dict

    @classmethod
    def model_construct(
        cls,
        content: str,
        finish_reason: str,
        completion_id: str = None,
        created: int = None,
        tool_calls: list[ToolCallModel] = None,
        usage: UsageModel = None,
        conversation: dict = None,
        reasoning: list[Reasoning] = None
    ):
        return super().model_construct(
            id=f"chatcmpl-{completion_id}" if completion_id else None,
            object="chat.completion",
            created=created,
            model=None,
            provider=None,
            choices=[ChatCompletionChoice.model_construct(
                ChatCompletionMessage.model_construct(content, reasoning, tool_calls),
                finish_reason,
            )],
            **filter_none(usage=usage, conversation=conversation)
        )

    @field_serializer('conversation')
    def serialize_conversation(self, conversation: dict):
        if hasattr(conversation, "get_dict"):
            return conversation.get_dict()
        return conversation

class ClientResponse(BaseModel):
    id: str
    object: str
    created_at: int
    model: str
    provider: Optional[str]
    output: list[ResponseMessage]
    usage: UsageModel
    conversation: dict

    @classmethod
    def model_construct(
        cls,
        content: str,
        response_id: str = None,
        created_at: int = None,
        usage: UsageModel = None,
        conversation: dict = None
    ) -> ClientResponse:
        return super().model_construct(
            id=f"resp-{response_id}" if response_id else None,
            object="response",
            created_at=created_at,
            model=None,
            provider=None,
            output=[
                ResponseMessage.model_construct(content),
            ],
            **filter_none(usage=usage, conversation=conversation)
        )

    @field_serializer('conversation')
    def serialize_conversation(self, conversation: dict):
        if hasattr(conversation, "get_dict"):
            return conversation.get_dict()
        return conversation

class ChatCompletionDelta(BaseModel):
    role: str
    content: Optional[str]
    reasoning: Optional[str] = None
    tool_calls: list[ToolCallModel] = None

    @classmethod
    def model_construct(cls, content: Optional[str]):
        if isinstance(content, Reasoning):
            return super().model_construct(role="assistant", content=None, reasoning=str(content))
        elif isinstance(content, ToolCalls) and content.get_list():
            return super().model_construct(role="assistant", content=None, tool_calls=[
                ToolCallModel.model_construct(**tool_call) for tool_call in content.get_list()
            ])
        return super().model_construct(role="assistant", content=content)

    @field_serializer('content')
    def serialize_content(self, content: Optional[str]):
        if content is None:
            return ""
        if isinstance(content, (Reasoning, ToolCalls)):
            return None
        return str(content)

class ChatCompletionDeltaChoice(BaseModel):
    index: int
    delta: ChatCompletionDelta
    finish_reason: Optional[str]

    @classmethod
    def model_construct(cls, delta: ChatCompletionDelta, finish_reason: Optional[str]):
        return super().model_construct(index=0, delta=delta, finish_reason=finish_reason)

class Image(BaseModel):
    url: Optional[str]
    b64_json: Optional[str]
    revised_prompt: Optional[str]

    @classmethod
    def model_construct(cls, url: str = None, b64_json: str = None, revised_prompt: str = None):
        return super().model_construct(**filter_none(
            url=url,
            b64_json=b64_json,
            revised_prompt=revised_prompt
        ))

    def save(self, path: str):
        if self.url is not None and self.url.startswith("/media/"):
            os.rename(self.url.replace("/media", get_media_dir()), path)

class ImagesResponse(BaseModel):
    data: List[Image]
    model: str
    provider: str
    created: int

    @classmethod
    def model_construct(cls, data: List[Image], created: int = None, model: str = None, provider: str = None):
        if created is None:
            created = int(time())
        return super().model_construct(
            data=data,
            model=model,
            provider=provider,
            created=created
        )