LoRDxdd's picture
Add gpt4free API for Hugging Face
a4b70d9
from __future__ import annotations
import random
from ...typing import AsyncResult, Messages, MediaListType
from ...errors import ResponseError
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from .BlackForestLabs_Flux1Dev import BlackForestLabs_Flux1Dev
from .BlackForestLabs_Flux1KontextDev import BlackForestLabs_Flux1KontextDev
from .CohereForAI_C4AI_Command import CohereForAI_C4AI_Command
from .DeepseekAI_JanusPro7b import DeepseekAI_JanusPro7b
from .Microsoft_Phi_4_Multimodal import Microsoft_Phi_4_Multimodal
from .Qwen_Qwen_2_5 import Qwen_Qwen_2_5
from .Qwen_Qwen_2_5M import Qwen_Qwen_2_5M
from .Qwen_Qwen_2_5_Max import Qwen_Qwen_2_5_Max
from .Qwen_Qwen_2_72B import Qwen_Qwen_2_72B
from .Qwen_Qwen_3 import Qwen_Qwen_3
from .StabilityAI_SD35Large import StabilityAI_SD35Large
class HuggingSpace(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://huggingface.co/spaces"
working = True
active_by_default = True
default_model = Qwen_Qwen_2_72B.default_model
default_image_model = BlackForestLabs_Flux1Dev.default_model
default_vision_model = Microsoft_Phi_4_Multimodal.default_model
providers = [
BlackForestLabs_Flux1Dev,
BlackForestLabs_Flux1KontextDev,
CohereForAI_C4AI_Command,
DeepseekAI_JanusPro7b,
Microsoft_Phi_4_Multimodal,
Qwen_Qwen_2_5,
Qwen_Qwen_2_5M,
Qwen_Qwen_2_5_Max,
Qwen_Qwen_2_72B,
Qwen_Qwen_3,
StabilityAI_SD35Large,
]
@classmethod
def get_parameters(cls, **kwargs) -> dict:
parameters = {}
for provider in cls.providers:
parameters = {**parameters, **provider.get_parameters(**kwargs)}
return parameters
@classmethod
def get_models(cls, **kwargs) -> list[str]:
if not cls.models:
models = []
image_models = []
vision_models = []
cls.model_aliases = {}
for provider in cls.providers:
models.extend(provider.get_models(**kwargs))
models.extend(provider.model_aliases.keys())
image_models.extend(provider.image_models)
vision_models.extend(provider.vision_models)
cls.model_aliases.update(provider.model_aliases)
models = list(set(models))
models.sort()
cls.models = models
cls.image_models = list(set(image_models))
cls.vision_models = list(set(vision_models))
return cls.models
@classmethod
async def create_async_generator(
cls, model: str, messages: Messages, media: MediaListType = None, **kwargs
) -> AsyncResult:
if not model and media is not None:
model = cls.default_vision_model
is_started = False
random.shuffle(cls.providers)
for provider in cls.providers:
if model in provider.model_aliases or model in provider.get_models():
alias = provider.model_aliases[model] if model in provider.model_aliases else model
async for chunk in provider.create_async_generator(alias, messages, media=media, **kwargs):
is_started = True
yield chunk
if is_started:
return
for provider in HuggingSpace.providers:
provider.parent = HuggingSpace.__name__
provider.hf_space = True