LoRDxdd's picture
Add gpt4free API for Hugging Face
a4b70d9
from __future__ import annotations
import os
import re
import asyncio
import uuid
import json
import base64
import time
import random
from typing import AsyncIterator, Iterator, Optional, Generator, Dict, Union, List, Any
from copy import copy
try:
import nodriver
has_nodriver = True
except ImportError:
has_nodriver = False
from ..base_provider import AsyncAuthedProvider, ProviderModelMixin
from ...typing import AsyncResult, Messages, Cookies, MediaListType
from ...requests.raise_for_status import raise_for_status
from ...requests import StreamSession
from ...requests import get_nodriver
from ...image import ImageRequest, to_image, to_bytes, is_accepted_format, detect_file_type
from ...errors import MissingAuthError, NoValidHarFileError, ModelNotFoundError
from ...providers.response import JsonConversation, FinishReason, SynthesizeData, AuthResult, ImageResponse, ImagePreview, ResponseType, format_link
from ...providers.response import TitleGeneration, RequestLogin, Reasoning
from ...tools.media import merge_media
from ..helper import format_cookies, format_media_prompt, to_string
from ..openai.models import default_model, default_image_model, models, image_models, text_models, model_aliases
from ..openai.har_file import get_request_config
from ..openai.har_file import RequestConfig, arkReq, arkose_url, start_url, conversation_url, backend_url, prepare_url, backend_anon_url
from ..openai.proofofwork import generate_proof_token
from ..openai.new import get_requirements_token, get_config
from ... import debug
DEFAULT_HEADERS = {
"accept": "*/*",
"accept-encoding": "gzip, deflate, br, zstd",
'accept-language': 'en-US,en;q=0.8',
"referer": "https://chatgpt.com/",
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sec-gpc": "1",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
INIT_HEADERS = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.8',
'cache-control': 'no-cache',
'pragma': 'no-cache',
'priority': 'u=0, i',
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
'sec-ch-ua-arch': '"arm"',
'sec-ch-ua-bitness': '"64"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-model': '""',
"sec-ch-ua-platform": "\"Windows\"",
'sec-ch-ua-platform-version': '"14.4.0"',
'sec-fetch-dest': 'document',
'sec-fetch-mode': 'navigate',
'sec-fetch-site': 'none',
'sec-fetch-user': '?1',
'upgrade-insecure-requests': '1',
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
UPLOAD_HEADERS = {
"accept": "application/json, text/plain, */*",
'accept-language': 'en-US,en;q=0.8',
"referer": "https://chatgpt.com/",
"priority": "u=1, i",
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
"sec-ch-ua-mobile": "?0",
'sec-ch-ua-platform': '"macOS"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "cross-site",
"x-ms-blob-type": "BlockBlob",
"x-ms-version": "2020-04-08",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
class OpenaiChat(AsyncAuthedProvider, ProviderModelMixin):
"""A class for creating and managing conversations with OpenAI chat service"""
label = "OpenAI ChatGPT"
url = "https://chatgpt.com"
working = True
active_by_default = True
use_nodriver = True
supports_gpt_4 = True
supports_message_history = True
supports_system_message = True
default_model = default_model
default_image_model = default_image_model
image_models = image_models
vision_models = text_models
models = models
model_aliases = model_aliases
synthesize_content_type = "audio/aac"
request_config = RequestConfig()
_api_key: str = None
_headers: dict = None
_cookies: Cookies = None
_expires: int = None
@classmethod
async def on_auth_async(cls, proxy: str = None, **kwargs) -> AsyncIterator:
async for chunk in cls.login(proxy=proxy):
yield chunk
yield AuthResult(
api_key=cls._api_key,
cookies=cls._cookies or cls.request_config.cookies or {},
headers=cls._headers or cls.request_config.headers or cls.get_default_headers(),
expires=cls._expires,
proof_token=cls.request_config.proof_token,
turnstile_token=cls.request_config.turnstile_token
)
@classmethod
async def upload_files(
cls,
session: StreamSession,
auth_result: AuthResult,
media: MediaListType,
) -> list[ImageRequest]:
"""
Upload an image to the service and get the download URL
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
media: The files to upload, either a PIL Image object or a bytes object
Returns:
An ImageRequest object that contains the download URL, file name, and other data
"""
async def upload_file(file, image_name=None):
debug.log(f"Uploading file: {image_name}")
file_data = {}
data_bytes = to_bytes(file)
extension, mime_type = detect_file_type(data_bytes)
if "image" in mime_type:
# Convert the image to a PIL Image object
file = to_image(data_bytes)
use_case = "multimodal"
file_data.update({"height": file.height, "width": file.width})
else:
use_case = "my_files"
image_name = (
f"file-{len(data_bytes)}{extension}"
if image_name is None
else image_name
)
data = {
"file_name": image_name,
"file_size": len(data_bytes),
"use_case": use_case,
}
# Post the image data to the service and get the image data
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=cls._headers) as response:
cls._update_request_args(auth_result, session)
await raise_for_status(response, "Create file failed")
file_data.update(
{
**data,
**await response.json(),
"mime_type": mime_type,
"extension": extension,
}
)
# Put the image bytes to the upload URL and check the status
await asyncio.sleep(1)
async with session.put(
file_data["upload_url"],
data=data_bytes,
headers={
**UPLOAD_HEADERS,
"Content-Type": file_data["mime_type"],
"x-ms-blob-type": "BlockBlob",
"x-ms-version": "2020-04-08",
"Origin": "https://chatgpt.com",
}
) as response:
await raise_for_status(response)
# Post the file ID to the service and get the download URL
async with session.post(
f"{cls.url}/backend-api/files/{file_data['file_id']}/uploaded",
json={},
headers=auth_result.headers
) as response:
cls._update_request_args(auth_result, session)
await raise_for_status(response, "Get download url failed")
uploaded_data = await response.json()
file_data["download_url"] = uploaded_data["download_url"]
return ImageRequest(file_data)
medias = []
for item in media:
item = item if isinstance(item, tuple) else (item,)
__uploaded_media = await upload_file(*item)
medias.append(__uploaded_media)
return medias
@classmethod
def create_messages(cls, messages: Messages, image_requests: ImageRequest = None, system_hints: list = None):
"""
Create a list of messages for the user input
Args:
prompt: The user input as a string
image_response: The image response object, if any
Returns:
A list of messages with the user input and the image, if any
"""
# merged_messages = []
# last_message = None
# for message in messages:
# current_message = last_message
# if current_message is not None:
# if current_message["role"] == message["role"]:
# current_message["content"] += "\n" + message["content"]
# else:
# merged_messages.append(current_message)
# last_message = message.copy()
# else:
# last_message = message.copy()
# if last_message is not None:
# merged_messages.append(last_message)
messages = [{
"id": str(uuid.uuid4()),
"author": {"role": message["role"]},
"content": {"content_type": "text", "parts": [to_string(message["content"])]},
"metadata": {"serialization_metadata": {"custom_symbol_offsets": []}, **({"system_hints": system_hints} if system_hints else {})},
"create_time": time.time(),
} for message in messages]
# Check if there is an image response
if image_requests:
# Change content in last user message
messages[-1]["content"] = {
"content_type": "multimodal_text",
"parts": [*[{
"asset_pointer": f"file-service://{image_request.get('file_id')}",
"height": image_request.get("height"),
"size_bytes": image_request.get("file_size"),
"width": image_request.get("width"),
}
for image_request in image_requests
# Add For Images Only
if image_request.get("use_case") == "multimodal"
],
messages[-1]["content"]["parts"][0]]
}
# Add the metadata object with the attachments
messages[-1]["metadata"] = {
"attachments": [{
"id": image_request.get("file_id"),
"mimeType": image_request.get("mime_type"),
"name": image_request.get("file_name"),
"size": image_request.get("file_size"),
**(
{
"height": image_request.get("height"),
"width": image_request.get("width"),
}
if image_request.get("use_case") == "multimodal"
else {}
),
}
for image_request in image_requests]
}
return messages
@classmethod
async def get_generated_image(cls, session: StreamSession, auth_result: AuthResult, element: Union[dict, str], prompt: str = None, conversation_id: str = None) -> AsyncIterator:
download_urls = []
is_sediment = False
if prompt is None:
try:
prompt = element["metadata"]["dalle"]["prompt"]
except KeyError:
pass
if "asset_pointer" in element:
element = element["asset_pointer"]
if isinstance(element, str) and element.startswith("file-service://"):
element = element.split("file-service://", 1)[-1]
elif isinstance(element, str) and element.startswith("sediment://"):
is_sediment = True
element = element.split("sediment://")[-1]
else:
raise RuntimeError(f"Invalid image element: {element}")
if is_sediment:
url = f"{cls.url}/backend-api/conversation/{conversation_id}/attachment/{element}/download"
else:
url =f"{cls.url}/backend-api/files/{element}/download"
try:
async with session.get(url, headers=auth_result.headers) as response:
cls._update_request_args(auth_result, session)
await raise_for_status(response)
data = await response.json()
download_url = data.get("download_url")
if download_url is not None:
download_urls.append(download_url)
debug.log(f"OpenaiChat: Found image: {download_url}")
else:
debug.log("OpenaiChat: No download URL found in response: ", data)
except Exception as e:
debug.error("OpenaiChat: Download image failed")
debug.error(e)
if download_urls:
return ImagePreview(download_urls, prompt) if is_sediment else ImageResponse(download_urls, prompt)
@classmethod
async def create_authed(
cls,
model: str,
messages: Messages,
auth_result: AuthResult,
proxy: str = None,
timeout: int = 360,
auto_continue: bool = False,
action: str = "next",
conversation: Conversation = None,
media: MediaListType = None,
return_conversation: bool = True,
web_search: bool = False,
prompt: str = None,
conversation_mode=None,
temporary=False,
**kwargs
) -> AsyncResult:
"""
Create an asynchronous generator for the conversation.
Args:
model (str): The model name.
messages (Messages): The list of previous messages.
proxy (str): Proxy to use for requests.
timeout (int): Timeout for requests.
api_key (str): Access token for authentication.
auto_continue (bool): Flag to automatically continue the conversation.
action (str): Type of action ('next', 'continue', 'variant').
conversation_id (str): ID of the conversation.
media (MediaListType): Images to include in the conversation.
return_conversation (bool): Flag to include response fields in the output.
**kwargs: Additional keyword arguments.
Yields:
AsyncResult: Asynchronous results from the generator.
Raises:
RuntimeError: If an error occurs during processing.
"""
async with StreamSession(
proxy=proxy,
impersonate="chrome",
timeout=timeout
) as session:
image_requests = None
media = merge_media(media, messages)
if not cls.needs_auth and not media:
if cls._headers is None:
cls._create_request_args(cls._cookies)
async with session.get(cls.url, headers=INIT_HEADERS) as response:
cls._update_request_args(auth_result, session)
await raise_for_status(response)
else:
if cls._headers is None and getattr(auth_result, "cookies", None):
cls._create_request_args(auth_result.cookies, auth_result.headers)
if not cls._set_api_key(getattr(auth_result, "api_key", None)):
raise MissingAuthError("Access token is not valid")
async with session.get(cls.url, headers=cls._headers) as response:
cls._update_request_args(auth_result, session)
await raise_for_status(response)
# try:
image_requests = await cls.upload_files(session, auth_result, media)
# except Exception as e:
# debug.error("OpenaiChat: Upload image failed")
# debug.error(e)
try:
model = cls.get_model(model)
except ModelNotFoundError:
pass
image_model = False
if model in cls.image_models:
image_model = True
model = cls.default_model
if conversation is None:
conversation = Conversation(None, str(uuid.uuid4()), getattr(auth_result, "cookies", {}).get("oai-did"))
else:
conversation = copy(conversation)
if conversation_mode is None:
conversation_mode = {"kind": "primary_assistant"}
if getattr(auth_result, "cookies", {}).get("oai-did") != getattr(conversation, "user_id", None):
conversation = Conversation(None, str(uuid.uuid4()))
if cls._api_key is None:
auto_continue = False
conversation.finish_reason = None
sources = OpenAISources([])
references = ContentReferences()
while conversation.finish_reason is None:
conduit_token = None
if cls._api_key is not None:
data = {
"action": "next",
"fork_from_shared_post": False,
"parent_message_id": conversation.message_id,
"model": model,
"timezone_offset_min": -120,
"timezone": "Europe/Berlin",
"conversation_mode": {"kind": "primary_assistant"},
"system_hints": [
"picture_v2"
] if image_model else [],
"supports_buffering": True,
"supported_encodings": ["v1"]
}
if temporary:
data["history_and_training_disabled"] = True
async with session.post(
prepare_url,
json=data,
headers=cls._headers
) as response:
await raise_for_status(response)
conduit_token = (await response.json())["conduit_token"]
async with session.post(
f"{cls.url}/backend-anon/sentinel/chat-requirements"
if cls._api_key is None else
f"{cls.url}/backend-api/sentinel/chat-requirements",
json={"p": None if not getattr(auth_result, "proof_token", None) else get_requirements_token(getattr(auth_result, "proof_token", None))},
headers=cls._headers
) as response:
if response.status in (401, 403):
raise MissingAuthError(f"Response status: {response.status}")
else:
cls._update_request_args(auth_result, session)
await raise_for_status(response)
chat_requirements = await response.json()
need_turnstile = chat_requirements.get("turnstile", {}).get("required", False)
need_arkose = chat_requirements.get("arkose", {}).get("required", False)
chat_token = chat_requirements.get("token")
# if need_arkose and cls.request_config.arkose_token is None:
# await get_request_config(proxy)
# cls._create_request_args(auth_result.cookies, auth_result.headers)
# cls._set_api_key(auth_result.access_token)
# if auth_result.arkose_token is None:
# raise MissingAuthError("No arkose token found in .har file")
if "proofofwork" in chat_requirements:
user_agent = getattr(auth_result, "headers", {}).get("user-agent")
proof_token = getattr(auth_result, "proof_token", None)
if proof_token is None:
auth_result.proof_token = get_config(user_agent)
proofofwork = generate_proof_token(
**chat_requirements["proofofwork"],
user_agent=user_agent,
proof_token=proof_token
)
# [debug.log(text) for text in (
#f"Arkose: {'False' if not need_arkose else auth_result.arkose_token[:12]+'...'}",
#f"Proofofwork: {'False' if proofofwork is None else proofofwork[:12]+'...'}",
#f"AccessToken: {'False' if cls._api_key is None else cls._api_key[:12]+'...'}",
# )]
data = {
"action": "next",
"parent_message_id": conversation.message_id,
"model": model,
"timezone_offset_min":-120,
"timezone":"Europe/Berlin",
"conversation_mode":{"kind":"primary_assistant"},
"enable_message_followups":True,
"system_hints": ["search"] if web_search else None,
"supports_buffering":True,
"supported_encodings":["v1"],
"client_contextual_info":{"is_dark_mode":False,"time_since_loaded":random.randint(20, 500),"page_height":578,"page_width":1850,"pixel_ratio":1,"screen_height":1080,"screen_width":1920},
"paragen_cot_summary_display_override":"allow"
}
if temporary:
data["history_and_training_disabled"] = True
if conversation.conversation_id is not None:
data["conversation_id"] = conversation.conversation_id
debug.log(f"OpenaiChat: Use conversation: {conversation.conversation_id}")
prompt = conversation.prompt = format_media_prompt(messages, prompt)
if action != "continue":
data["parent_message_id"] = getattr(conversation, "parent_message_id", conversation.message_id)
conversation.parent_message_id = None
new_messages = messages
if conversation.conversation_id is not None:
new_messages = []
for message in messages:
if message.get("role") == "assistant":
new_messages = []
else:
new_messages.append(message)
data["messages"] = cls.create_messages(new_messages, image_requests, ["search"] if web_search else None)
headers = {
**cls._headers,
"accept": "text/event-stream",
"content-type": "application/json",
"openai-sentinel-chat-requirements-token": chat_token,
**({} if conduit_token is None else {"x-conduit-token": conduit_token})
}
#if cls.request_config.arkose_token:
# headers["openai-sentinel-arkose-token"] = cls.request_config.arkose_token
if proofofwork is not None:
headers["openai-sentinel-proof-token"] = proofofwork
if need_turnstile and getattr(auth_result, "turnstile_token", None) is not None:
headers['openai-sentinel-turnstile-token'] = auth_result.turnstile_token
async with session.post(
backend_anon_url
if cls._api_key is None else
backend_url,
json=data,
headers=headers
) as response:
cls._update_request_args(auth_result, session)
if response.status in (401, 403, 429):
raise MissingAuthError("Access token is not valid")
elif response.status == 422:
raise RuntimeError((await response.json()), data)
await raise_for_status(response)
buffer = u""
matches = []
async for line in response.iter_lines():
pattern = re.compile(r"file-service://[\w-]+")
for match in pattern.finditer(line.decode(errors="ignore")):
if match.group(0) in matches:
continue
matches.append(match.group(0))
generated_image = await cls.get_generated_image(session, auth_result, match.group(0), prompt)
if generated_image is not None:
yield generated_image
async for chunk in cls.iter_messages_line(session, auth_result, line, conversation, sources, references):
if isinstance(chunk, str):
chunk = chunk.replace("\ue203", "").replace("\ue204", "").replace("\ue206", "")
buffer += chunk
if buffer.find(u"\ue200") != -1:
if buffer.find(u"\ue201") != -1:
def sequence_replacer(match):
def citation_replacer(match: re.Match[str]):
ref_type = match.group(1)
ref_index = int(match.group(2))
if ((ref_type == "image" and is_image_embedding) or
is_video_embedding or
ref_type == "forecast"):
reference = references.get_reference({
"ref_index": ref_index,
"ref_type": ref_type
})
if not reference:
return ""
if ref_type == "forecast":
if reference.get("alt"):
return reference.get("alt")
if reference.get("prompt_text"):
return reference.get("prompt_text")
if is_image_embedding and reference.get("content_url", ""):
return f"![{reference.get('title', '')}]({reference.get('content_url')})"
if is_video_embedding:
if reference.get("url", "") and reference.get("thumbnail_url", ""):
return f"[![{reference.get('title', '')}]({reference['thumbnail_url']})]({reference['url']})"
video_match = re.match(r"video\n(.*?)\nturn[0-9]+", match.group(0))
if video_match:
return video_match.group(1)
return ""
source_index = sources.get_index({
"ref_index": ref_index,
"ref_type": ref_type
})
if source_index is not None and len(sources.list) > source_index:
link = sources.list[source_index]["url"]
return f"[[{source_index+1}]]({link})"
return f""
def products_replacer(match: re.Match[str]):
try:
products_data = json.loads(match.group(1))
products_str = ""
for idx, _ in enumerate(products_data.get("selections", []) or []):
name = products_data.get('selections', [])[idx][1]
tags = products_data.get('tags', [])[idx]
products_str += f"{name} - {tags}\n\n"
return products_str
except:
return ""
sequence_content = match.group(1)
sequence_content = sequence_content.replace("\ue200", "").replace("\ue202", "\n").replace("\ue201", "")
sequence_content = sequence_content.replace("navlist\n", "#### ")
# Handle search, news, view and image citations
is_image_embedding = sequence_content.startswith("i\nturn")
is_video_embedding = sequence_content.startswith("video\n")
sequence_content = re.sub(
r'(?:cite\nturn[0-9]+|forecast\nturn[0-9]+|video\n.*?\nturn[0-9]+|i?\n?turn[0-9]+)(search|news|view|image|forecast)(\d+)',
citation_replacer,
sequence_content
)
sequence_content = re.sub(r'products\n(.*)', products_replacer, sequence_content)
sequence_content = re.sub(r'product_entity\n\[".*","(.*)"\]', lambda x: x.group(1), sequence_content)
return sequence_content
# process only completed sequences and do not touch start of next not completed sequence
buffer = re.sub(r'\ue200(.*?)\ue201', sequence_replacer, buffer, flags=re.DOTALL)
if buffer.find(u"\ue200") != -1: # still have uncompleted sequence
continue
else:
# do not yield to consume rest part of special sequence
continue
yield buffer
buffer = ""
else:
yield chunk
if conversation.finish_reason is not None:
break
if buffer:
yield buffer
if sources.list:
yield sources
if conversation.generated_images:
yield ImageResponse(conversation.generated_images.urls, conversation.prompt)
conversation.generated_images = None
conversation.prompt = None
if return_conversation:
yield conversation
if auth_result.api_key is not None:
yield SynthesizeData(cls.__name__, {
"conversation_id": conversation.conversation_id,
"message_id": conversation.message_id,
"voice": "maple",
})
if auto_continue and conversation.finish_reason == "max_tokens":
conversation.finish_reason = None
action = "continue"
await asyncio.sleep(5)
else:
break
yield FinishReason(conversation.finish_reason)
@classmethod
async def iter_messages_line(cls, session: StreamSession, auth_result: AuthResult, line: bytes, fields: Conversation, sources: OpenAISources, references: ContentReferences) -> AsyncIterator:
if not line.startswith(b"data: "):
return
elif line.startswith(b"data: [DONE]"):
return
try:
line = json.loads(line[6:])
except:
return
if not isinstance(line, dict):
return
if "type" in line:
if line["type"] == "title_generation":
yield TitleGeneration(line["title"])
fields.p = line.get("p", fields.p)
if fields.p is not None and fields.p.startswith("/message/content/thoughts"):
if fields.p.endswith("/content"):
if fields.thoughts_summary:
yield Reasoning(token="", status=fields.thoughts_summary)
fields.thoughts_summary = ""
yield Reasoning(token=line.get("v"))
elif fields.p.endswith("/summary"):
fields.thoughts_summary += line.get("v")
return
if "v" in line:
v = line.get("v")
if isinstance(v, str) and fields.recipient == "all":
if fields.p == "/message/metadata/refresh_key_info":
yield ""
elif "p" not in line or line.get("p") == "/message/content/parts/0":
yield Reasoning(token=v) if fields.is_thinking else v
elif isinstance(v, list):
buffer = ""
for m in v:
if m.get("p") == "/message/content/parts/0" and fields.recipient == "all":
buffer += m.get("v")
elif m.get("p") == "/message/metadata/image_gen_title":
fields.prompt = m.get("v")
elif m.get("p") == "/message/content/parts/0/asset_pointer":
generated_images = fields.generated_images = await cls.get_generated_image(session, auth_result, m.get("v"), fields.prompt, fields.conversation_id)
if generated_images is not None:
if buffer:
yield buffer
yield generated_images
elif m.get("p") == "/message/metadata/search_result_groups":
for entry in [p.get("entries") for p in m.get("v")]:
for link in entry:
sources.add_source(link)
elif m.get("p") == "/message/metadata/content_references" and not isinstance(m.get("v"), int):
for entry in m.get("v"):
for link in entry.get("sources", []):
sources.add_source(link)
for link in entry.get("items", []):
sources.add_source(link)
for link in entry.get("fallback_items", []) or []:
sources.add_source(link)
if m.get("o", None) == "append":
references.add_reference(entry)
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+$", m.get("p")):
if "url" in m.get("v") or "link" in m.get("v"):
sources.add_source(m.get("v"))
for link in m.get("v").get("fallback_items", []) or []:
sources.add_source(link)
match = re.match(r"^/message/metadata/content_references/(\d+)$", m.get("p"))
if match and m.get("o") == "append" and isinstance(m.get("v"), dict):
idx = int(match.group(1))
references.merge_reference(idx, m.get("v"))
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+/fallback_items$", m.get("p")) and isinstance(m.get("v"), list):
for link in m.get("v", []) or []:
sources.add_source(link)
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+/items$", m.get("p")) and isinstance(m.get("v"), list):
for link in m.get("v", []) or []:
sources.add_source(link)
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+/refs$", m.get("p")) and isinstance(m.get("v"), list):
match = re.match(r"^/message/metadata/content_references/(\d+)/refs$", m.get("p"))
if match:
idx = int(match.group(1))
references.update_reference(idx, m.get("o"), "refs", m.get("v"))
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+/alt$", m.get("p")) and isinstance(m.get("v"), list):
match = re.match(r"^/message/metadata/content_references/(\d+)/alt$", m.get("p"))
if match:
idx = int(match.group(1))
references.update_reference(idx, m.get("o"), "alt", m.get("v"))
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+/prompt_text$", m.get("p")) and isinstance(m.get("v"), list):
match = re.match(r"^/message/metadata/content_references/(\d+)/prompt_text$", m.get("p"))
if match:
idx = int(match.group(1))
references.update_reference(idx, m.get("o"), "prompt_text", m.get("v"))
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+/refs/\d+$", m.get("p")) and isinstance(m.get("v"), dict):
match = re.match(r"^/message/metadata/content_references/(\d+)/refs/(\d+)$", m.get("p"))
if match:
reference_idx = int(match.group(1))
ref_idx = int(match.group(2))
references.update_reference(reference_idx, m.get("o"), "refs", m.get("v"), ref_idx)
elif m.get("p") and re.match(r"^/message/metadata/content_references/\d+/images$", m.get("p")) and isinstance(m.get("v"), list):
match = re.match(r"^/message/metadata/content_references/(\d+)/images$", m.get("p"))
if match:
idx = int(match.group(1))
references.update_reference(idx, m.get("o"), "images", m.get("v"))
elif m.get("p") == "/message/metadata/finished_text":
fields.is_thinking = False
if buffer:
yield buffer
yield Reasoning(status=m.get("v"))
elif m.get("p") == "/message/metadata" and fields.recipient == "all":
fields.finish_reason = m.get("v", {}).get("finish_details", {}).get("type")
break
yield buffer
elif isinstance(v, dict):
if fields.conversation_id is None:
fields.conversation_id = v.get("conversation_id")
debug.log(f"OpenaiChat: New conversation: {fields.conversation_id}")
m = v.get("message", {})
fields.recipient = m.get("recipient", fields.recipient)
if fields.recipient == "all":
c = m.get("content", {})
if c.get("content_type") == "text" and m.get("author", {}).get("role") == "tool" and "initial_text" in m.get("metadata", {}):
fields.is_thinking = True
yield Reasoning(status=m.get("metadata", {}).get("initial_text"))
#if c.get("content_type") == "multimodal_text":
# for part in c.get("parts"):
# if isinstance(part, dict) and part.get("content_type") == "image_asset_pointer":
# yield await cls.get_generated_image(session, auth_result, part, fields.prompt, fields.conversation_id)
if m.get("author", {}).get("role") == "assistant":
if fields.parent_message_id is None:
fields.parent_message_id = v.get("message", {}).get("id")
fields.message_id = v.get("message", {}).get("id")
return
if "error" in line and line.get("error"):
raise RuntimeError(line.get("error"))
@classmethod
async def synthesize(cls, params: dict) -> AsyncIterator[bytes]:
async with StreamSession(
impersonate="chrome",
timeout=0
) as session:
async with session.get(
f"{cls.url}/backend-api/synthesize",
params=params,
headers=cls._headers
) as response:
await raise_for_status(response)
async for chunk in response.iter_content():
yield chunk
@classmethod
async def login(
cls,
proxy: str = None,
api_key: str = None,
proof_token: str = None,
cookies: Cookies = None,
headers: dict = None,
**kwargs
) -> AsyncIterator:
if cls._expires is not None and (cls._expires - 60*10) < time.time():
cls._headers = cls._api_key = None
if cls._headers is None or headers is not None:
cls._headers = {} if headers is None else headers
if proof_token is not None:
cls.request_config.proof_token = proof_token
if cookies is not None:
cls.request_config.cookies = cookies
if api_key is not None:
cls._create_request_args(cls.request_config.cookies, cls.request_config.headers)
cls._set_api_key(api_key)
else:
try:
cls.request_config = await get_request_config(cls.request_config, proxy)
if cls.request_config is None:
cls.request_config = RequestConfig()
cls._create_request_args(cls.request_config.cookies, cls.request_config.headers)
if cls.needs_auth and cls.request_config.access_token is None:
raise NoValidHarFileError(f"Missing access token")
if not cls._set_api_key(cls.request_config.access_token):
raise NoValidHarFileError(f"Access token is not valid: {cls.request_config.access_token}")
except NoValidHarFileError:
if has_nodriver:
if cls.request_config.access_token is None:
yield RequestLogin(cls.label, os.environ.get("G4F_LOGIN_URL", ""))
await cls.nodriver_auth(proxy)
else:
raise
@classmethod
async def nodriver_auth(cls, proxy: str = None):
browser, stop_browser = await get_nodriver(proxy=proxy)
try:
page = await browser.get(cls.url)
def on_request(event: nodriver.cdp.network.RequestWillBeSent, page=None):
if event.request.url == start_url or event.request.url.startswith(conversation_url):
if cls.request_config.headers is None:
cls.request_config.headers = {}
for key, value in event.request.headers.items():
cls.request_config.headers[key.lower()] = value
elif event.request.url in (backend_url, backend_anon_url):
if "OpenAI-Sentinel-Proof-Token" in event.request.headers:
cls.request_config.proof_token = json.loads(base64.b64decode(
event.request.headers["OpenAI-Sentinel-Proof-Token"].split("gAAAAAB", 1)[-1].split("~")[0].encode()
).decode())
if "OpenAI-Sentinel-Turnstile-Token" in event.request.headers:
cls.request_config.turnstile_token = event.request.headers["OpenAI-Sentinel-Turnstile-Token"]
if "Authorization" in event.request.headers:
cls._api_key = event.request.headers["Authorization"].split()[-1]
elif event.request.url == arkose_url:
cls.request_config.arkose_request = arkReq(
arkURL=event.request.url,
arkBx=None,
arkHeader=event.request.headers,
arkBody=event.request.post_data,
userAgent=event.request.headers.get("User-Agent")
)
await page.send(nodriver.cdp.network.enable())
page.add_handler(nodriver.cdp.network.RequestWillBeSent, on_request)
await page.reload()
user_agent = await page.evaluate("window.navigator.userAgent", return_by_value=True)
if cls.needs_auth:
await page.select('[data-testid="accounts-profile-button"]', 300)
textarea = await page.select("#prompt-textarea", 300)
await textarea.send_keys("Hello")
await asyncio.sleep(1)
button = await page.select("[data-testid=\"send-button\"]")
if button:
await button.click()
while True:
body = await page.evaluate("JSON.stringify(window.__remixContext)", return_by_value=True)
if hasattr(body, "value"):
body = body.value
if body:
match = re.search(r'"accessToken":"(.+?)"', body)
if match:
cls._api_key = match.group(1)
break
if cls._api_key is not None or not cls.needs_auth:
break
await asyncio.sleep(1)
while True:
if cls.request_config.proof_token:
break
await asyncio.sleep(1)
cls.request_config.data_build = await page.evaluate("document.documentElement.getAttribute('data-build')")
cls.request_config.cookies = await page.send(get_cookies([cls.url]))
await page.close()
cls._create_request_args(cls.request_config.cookies, cls.request_config.headers, user_agent=user_agent)
cls._set_api_key(cls._api_key)
finally:
stop_browser()
@staticmethod
def get_default_headers() -> Dict[str, str]:
return {
**DEFAULT_HEADERS,
"content-type": "application/json",
}
@classmethod
def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None):
cls._headers = cls.get_default_headers() if headers is None else headers
if user_agent is not None:
cls._headers["user-agent"] = user_agent
cls._cookies = {} if cookies is None else cookies
cls._update_cookie_header()
@classmethod
def _update_request_args(cls, auth_result: AuthResult, session: StreamSession):
if hasattr(auth_result, "cookies"):
for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
auth_result.cookies[getattr(c, "key", getattr(c, "name", ""))] = c.value
cls._cookies = auth_result.cookies
cls._update_cookie_header()
@classmethod
def _set_api_key(cls, api_key: str):
cls._api_key = api_key
if api_key:
exp = api_key.split(".")[1]
exp = (exp + "=" * (4 - len(exp) % 4)).encode()
cls._expires = json.loads(base64.b64decode(exp)).get("exp")
debug.log(f"OpenaiChat: API key expires at\n {cls._expires} we have:\n {time.time()}")
if time.time() > cls._expires:
debug.log(f"OpenaiChat: API key is expired")
return False
else:
cls._headers["authorization"] = f"Bearer {api_key}"
return True
return True
@classmethod
def _update_cookie_header(cls):
if cls._cookies:
cls._headers["cookie"] = format_cookies(cls._cookies)
class Conversation(JsonConversation):
"""
Class to encapsulate response fields.
"""
def __init__(self, conversation_id: str = None, message_id: str = None, user_id: str = None, finish_reason: str = None, parent_message_id: str = None, is_thinking: bool = False):
self.conversation_id = conversation_id
self.message_id = message_id
self.finish_reason = finish_reason
self.recipient = "all"
self.parent_message_id = message_id if parent_message_id is None else parent_message_id
self.user_id = user_id
self.is_thinking = is_thinking
self.p = None
self.thoughts_summary = ""
self.prompt = None
self.generated_images: ImagePreview = None
def get_cookies(
urls: Optional[Iterator[str]] = None
) -> Generator[Dict, Dict, Dict[str, str]]:
params = {}
if urls is not None:
params['urls'] = [i for i in urls]
cmd_dict = {
'method': 'Network.getCookies',
'params': params,
}
json = yield cmd_dict
return {c["name"]: c["value"] for c in json['cookies']} if 'cookies' in json else {}
class OpenAISources(ResponseType):
list: List[Dict[str, str]]
def __init__(self, sources: List[Dict[str, str]]) -> None:
"""Initialize with a list of source dictionaries."""
self.list = []
for source in sources:
self.add_source(source)
def add_source(self, source: Union[Dict[str, str], str]) -> None:
"""Add a source to the list, cleaning the URL if necessary."""
source = source if isinstance(source, dict) else {"url": source}
url = source.get("url", source.get("link", None))
if not url:
return
url = re.sub(r"[&?]utm_source=.+", "", url)
source["url"] = url
ref_info = self.get_ref_info(source)
if ref_info:
existing_source, idx = self.find_by_ref_info(ref_info)
if existing_source and idx is not None:
self.list[idx] = source
return
existing_source, idx = self.find_by_url(source["url"])
if existing_source and idx is not None:
self.list[idx] = source
return
self.list.append(source)
def __str__(self) -> str:
"""Return formatted sources as a string."""
if not self.list:
return ""
return "\n\n\n\n" + ("\n>\n".join([
f"> [{idx+1}] {format_link(link['url'], link.get('title', ''))}"
for idx, link in enumerate(self.list)
]))
def get_ref_info(self, source: Dict[str, str]) -> dict[str, str|int] | None:
ref_index = source.get("ref_id", {}).get("ref_index", None)
ref_type = source.get("ref_id", {}).get("ref_type", None)
if isinstance(ref_index, int):
return {
"ref_index": ref_index,
"ref_type": ref_type,
}
for ref_info in source.get('refs') or []:
ref_index = ref_info.get("ref_index", None)
ref_type = ref_info.get("ref_type", None)
if isinstance(ref_index, int):
return {
"ref_index": ref_index,
"ref_type": ref_type,
}
return None
def find_by_ref_info(self, ref_info: dict[str, str|int]):
for idx, source in enumerate(self.list):
source_ref_info = self.get_ref_info(source)
if (source_ref_info and
source_ref_info["ref_index"] == ref_info["ref_index"] and
source_ref_info["ref_type"] == ref_info["ref_type"]):
return source, idx
return None, None
def find_by_url(self, url: str):
for idx, source in enumerate(self.list):
if source["url"] == url:
return source, idx
return None, None
def get_index(self, ref_info: dict[str, str|int]) -> int | None:
_, index = self.find_by_ref_info(ref_info)
if index is not None:
return index
return None
class ContentReferences:
def __init__(self) -> None:
self.list: List[Dict[str, Any]] = []
def add_reference(self, reference_part: dict) -> None:
self.list.append(reference_part)
def merge_reference(self, idx: int, reference_part: dict):
while len(self.list) <= idx:
self.list.append({})
self.list[idx] = {**self.list[idx], **reference_part}
def update_reference(self, idx: int, operation: str, field: str, value: Any, ref_idx = None) -> None:
while len(self.list) <= idx:
self.list.append({})
if operation == "append" or operation == "add":
if not isinstance(self.list[idx].get(field, None), list):
self.list[idx][field] = []
if isinstance(value, list):
self.list[idx][field].extend(value)
else:
self.list[idx][field].append(value)
if operation == "replace" and ref_idx is not None:
if field == "refs" and not isinstance(self.list[idx].get(field, None), list):
self.list[idx][field] = []
if isinstance(self.list[idx][field], list):
if len(self.list[idx][field]) <= ref_idx:
self.list[idx][field].append(value)
else:
self.list[idx][field][ref_idx] = value
else:
self.list[idx][field] = value
def get_ref_info(
self,
source: Dict[str, str],
target_ref_info: Dict[str, Union[str, int]]
) -> dict[str, str|int] | None:
for idx, ref_info in enumerate(source.get("refs", [])) or []:
if not isinstance(ref_info, dict):
continue
ref_index = ref_info.get("ref_index", None)
ref_type = ref_info.get("ref_type", None)
if isinstance(ref_index, int) and isinstance(ref_type, str):
if (not target_ref_info or
(target_ref_info["ref_index"] == ref_index and
target_ref_info["ref_type"] == ref_type)):
return {
"ref_index": ref_index,
"ref_type": ref_type,
"idx": idx
}
return None
def get_reference(self, ref_info: Dict[str, Union[str, int]]) -> Any:
for reference in self.list:
reference_ref_info = self.get_ref_info(reference, ref_info)
if (not reference_ref_info or
reference_ref_info["ref_index"] != ref_info["ref_index"] or
reference_ref_info["ref_type"] != ref_info["ref_type"]):
continue
if ref_info["ref_type"] != "image":
return reference
images = reference.get("images", [])
if isinstance(images, list) and len(images) > reference_ref_info["idx"]:
return images[reference_ref_info["idx"]]
return None