gpt / gpt4free /g4f /tools /run_tools.py
LoRDxdd's picture
Add gpt4free API for Hugging Face
a4b70d9
from __future__ import annotations
import os
import re
import json
import asyncio
import time
import datetime
from pathlib import Path
from typing import Optional, AsyncIterator, Iterator, Dict, Any, Tuple, List, Union
from ..typing import Messages
from ..providers.helper import filter_none
from ..providers.asyncio import to_async_iterator
from ..providers.response import Reasoning, FinishReason, Sources, Usage, ProviderInfo
from ..providers.types import ProviderType
from ..cookies import get_cookies_dir
from .web_search import do_search, get_search_message
from .files import read_bucket, get_bucket_dir
from .. import debug
# Constants
BUCKET_INSTRUCTIONS = """
Instruction: Make sure to add the sources of cites using [[domain]](Url) notation after the reference. Example: [[a-z0-9.]](http://example.com)
"""
TOOL_NAMES = {
"SEARCH": "search_tool",
"CONTINUE": "continue_tool",
"BUCKET": "bucket_tool"
}
class ToolHandler:
"""Handles processing of different tool types"""
@staticmethod
def validate_arguments(data: dict) -> dict:
"""Validate and parse tool arguments"""
if "arguments" in data:
if isinstance(data["arguments"], str):
data["arguments"] = json.loads(data["arguments"])
if not isinstance(data["arguments"], dict):
raise ValueError("Tool function arguments must be a dictionary or a json string")
else:
return filter_none(**data["arguments"])
else:
return {}
@staticmethod
async def process_search_tool(messages: Messages, tool: dict) -> Messages:
"""Process search tool requests"""
messages = messages.copy()
args = ToolHandler.validate_arguments(tool["function"])
messages[-1]["content"], sources = await do_search(
messages[-1]["content"],
**args
)
return messages, sources
@staticmethod
def process_continue_tool(messages: Messages, tool: dict, provider: Any) -> Tuple[Messages, Dict[str, Any]]:
"""Process continue tool requests"""
kwargs = {}
if provider not in ("OpenaiAccount", "HuggingFaceAPI"):
messages = messages.copy()
last_line = messages[-1]["content"].strip().splitlines()[-1]
content = f"Carry on from this point:\n{last_line}"
messages.append({"role": "user", "content": content})
else:
# Enable provider native continue
kwargs["action"] = "continue"
return messages, kwargs
@staticmethod
def process_bucket_tool(messages: Messages, tool: dict) -> Messages:
"""Process bucket tool requests"""
messages = messages.copy()
def on_bucket(match):
return "".join(read_bucket(get_bucket_dir(match.group(1))))
has_bucket = False
for message in messages:
if "content" in message and isinstance(message["content"], str):
new_message_content = re.sub(r'{"bucket_id":\s*"([^"]*)"}', on_bucket, message["content"])
if new_message_content != message["content"]:
has_bucket = True
message["content"] = new_message_content
last_message_content = messages[-1]["content"]
if has_bucket and isinstance(last_message_content, str):
if "\nSource: " in last_message_content:
messages[-1]["content"] = last_message_content + BUCKET_INSTRUCTIONS
return messages
@staticmethod
async def process_tools(messages: Messages, tool_calls: List[dict], provider: Any) -> Tuple[Messages, Dict[str, Any]]:
"""Process all tool calls and return updated messages and kwargs"""
if not tool_calls:
return messages, {}
extra_kwargs = {}
messages = messages.copy()
sources = None
for tool in tool_calls:
if tool.get("type") != "function":
continue
function_name = tool.get("function", {}).get("name")
debug.log(f"Processing tool call: {function_name}")
if function_name == TOOL_NAMES["SEARCH"]:
messages, sources = await ToolHandler.process_search_tool(messages, tool)
elif function_name == TOOL_NAMES["CONTINUE"]:
messages, kwargs = ToolHandler.process_continue_tool(messages, tool, provider)
extra_kwargs.update(kwargs)
elif function_name == TOOL_NAMES["BUCKET"]:
messages = ToolHandler.process_bucket_tool(messages, tool)
return messages, sources, extra_kwargs
class AuthManager:
"""Handles API key management"""
aliases = {
"GeminiPro": "Gemini",
"PollinationsAI": "Pollinations",
"OpenaiAPI": "Openai",
"PuterJS": "Puter",
}
@classmethod
def load_api_key(cls, provider: ProviderType) -> Optional[str]:
"""Load API key from config file"""
if not provider.needs_auth and not hasattr(provider, "login_url"):
return None
provider_name = provider.get_parent()
env_var = f"{provider_name.upper()}_API_KEY"
api_key = os.environ.get(env_var)
if not api_key and provider_name in cls.aliases:
env_var = f"{cls.aliases[provider_name].upper()}_API_KEY"
api_key = os.environ.get(env_var)
if api_key:
debug.log(f"Loading API key for {provider_name} from environment variable {env_var}")
return api_key
return None
class ThinkingProcessor:
"""Processes thinking chunks"""
@staticmethod
def process_thinking_chunk(chunk: str, start_time: float = 0) -> Tuple[float, List[Union[str, Reasoning]]]:
"""Process a thinking chunk and return timing and results."""
results = []
# Handle non-thinking chunk
if not start_time and "<think>" not in chunk and "</think>" not in chunk:
return 0, [chunk]
# Handle thinking start
if "<think>" in chunk and "`<think>`" not in chunk:
before_think, *after = chunk.split("<think>", 1)
if before_think:
results.append(before_think)
results.append(Reasoning(status="🤔 Is thinking...", is_thinking="<think>"))
if after:
if "</think>" in after[0]:
after, *after_end = after[0].split("</think>", 1)
results.append(Reasoning(after))
results.append(Reasoning(status="", is_thinking="</think>"))
if after_end:
results.append(after_end[0])
return 0, results
else:
results.append(Reasoning(after[0]))
return time.time(), results
# Handle thinking end
if "</think>" in chunk:
before_end, *after = chunk.split("</think>", 1)
if before_end:
results.append(Reasoning(before_end))
thinking_duration = time.time() - start_time if start_time > 0 else 0
status = f"Thought for {thinking_duration:.2f}s" if thinking_duration > 1 else ""
results.append(Reasoning(status=status, is_thinking="</think>"))
# Make sure to handle text after the closing tag
if after and after[0].strip():
results.append(after[0])
return 0, results
# Handle ongoing thinking
if start_time:
return start_time, [Reasoning(chunk)]
return start_time, [chunk]
async def perform_web_search(messages: Messages, web_search_param: Any) -> Tuple[Messages, Optional[Sources]]:
"""Perform web search and return updated messages and sources"""
messages = messages.copy()
sources = None
if not web_search_param:
return messages, sources
try:
search_query = web_search_param if isinstance(web_search_param, str) and web_search_param != "true" else None
messages[-1]["content"], sources = await do_search(messages[-1]["content"], search_query)
except Exception as e:
debug.error(f"Couldn't do web search:", e)
return messages, sources
async def async_iter_run_tools(
provider: ProviderType,
model: str,
messages: Messages,
tool_calls: Optional[List[dict]] = None,
**kwargs
) -> AsyncIterator:
"""Asynchronously run tools and yield results"""
# Process web search
sources = None
web_search = kwargs.get('web_search')
if web_search:
debug.log(f"Performing web search with value: {web_search}")
messages, sources = await perform_web_search(messages, web_search)
# Get API key
if not kwargs.get("api_key"):
api_key = AuthManager.load_api_key(provider)
if api_key:
kwargs["api_key"] = api_key
# Process tool calls
if tool_calls:
messages, sources, extra_kwargs = await ToolHandler.process_tools(messages, tool_calls, provider)
kwargs.update(extra_kwargs)
# Generate response
response = to_async_iterator(provider.async_create_function(model=model, messages=messages, **kwargs))
try:
model_info = model
async for chunk in response:
if isinstance(chunk, ProviderInfo):
model_info = getattr(chunk, 'model', model_info)
elif isinstance(chunk, Usage):
usage = {"user": kwargs.get("user"), "model": model_info, "provider": provider.get_parent(), **chunk.get_dict()}
usage_dir = Path(get_cookies_dir()) / ".usage"
usage_file = usage_dir / f"{datetime.date.today()}.jsonl"
usage_dir.mkdir(parents=True, exist_ok=True)
with usage_file.open("a" if usage_file.exists() else "w") as f:
f.write(f"{json.dumps(usage)}\n")
yield chunk
provider.live += 1
except:
provider.live -= 1
raise
# Yield sources if available
if sources:
yield sources
def iter_run_tools(
provider: ProviderType,
model: str,
messages: Messages,
tool_calls: Optional[List[dict]] = None,
**kwargs
) -> Iterator:
"""Run tools synchronously and yield results"""
# Process web search
web_search = kwargs.get('web_search')
sources = None
if web_search:
debug.log(f"Performing web search with value: {web_search}")
try:
messages = messages.copy()
search_query = web_search if isinstance(web_search, str) and web_search != "true" else None
# Note: Using asyncio.run inside sync function is not ideal, but maintaining original pattern
messages[-1]["content"], sources = asyncio.run(do_search(messages[-1]["content"], search_query))
except Exception as e:
debug.error(f"Couldn't do web search:", e)
# Get API key if needed
if not kwargs.get("api_key"):
api_key = AuthManager.load_api_key(provider)
if api_key:
kwargs["api_key"] = api_key
# Process tool calls
if tool_calls:
for tool in tool_calls:
if tool.get("type") == "function":
function_name = tool.get("function", {}).get("name")
debug.log(f"Processing tool call: {function_name}")
if function_name == TOOL_NAMES["SEARCH"]:
tool["function"]["arguments"] = ToolHandler.validate_arguments(tool["function"])
messages[-1]["content"] = get_search_message(
messages[-1]["content"],
raise_search_exceptions=True,
**tool["function"]["arguments"]
)
elif function_name == TOOL_NAMES["CONTINUE"]:
if provider.__name__ not in ("OpenaiAccount", "HuggingFace"):
last_line = messages[-1]["content"].strip().splitlines()[-1]
content = f"Carry on from this point:\n{last_line}"
messages.append({"role": "user", "content": content})
else:
# Enable provider native continue
kwargs["action"] = "continue"
elif function_name == TOOL_NAMES["BUCKET"]:
def on_bucket(match):
return "".join(read_bucket(get_bucket_dir(match.group(1))))
has_bucket = False
for message in messages:
if "content" in message and isinstance(message["content"], str):
new_message_content = re.sub(r'{"bucket_id":"([^"]*)"}', on_bucket, message["content"])
if new_message_content != message["content"]:
has_bucket = True
message["content"] = new_message_content
last_message = messages[-1]["content"]
if has_bucket and isinstance(last_message, str):
if "\nSource: " in last_message:
messages[-1]["content"] = last_message + BUCKET_INSTRUCTIONS
# Process response chunks
thinking_start_time = 0
processor = ThinkingProcessor()
model_info = model
try:
for chunk in provider.create_function(model=model, messages=messages, provider=provider, **kwargs):
if isinstance(chunk, FinishReason):
if sources is not None:
yield sources
sources = None
yield chunk
continue
elif isinstance(chunk, Sources):
sources = None
elif isinstance(chunk, ProviderInfo):
model_info = getattr(chunk, 'model', model_info)
elif isinstance(chunk, Usage):
usage = {"user": kwargs.get("user"), "model": model_info, "provider": provider.get_parent(), **chunk.get_dict()}
usage_dir = Path(get_cookies_dir()) / ".usage"
usage_file = usage_dir / f"{datetime.date.today()}.jsonl"
usage_dir.mkdir(parents=True, exist_ok=True)
with usage_file.open("a" if usage_file.exists() else "w") as f:
f.write(f"{json.dumps(usage)}\n")
if not isinstance(chunk, str):
yield chunk
continue
thinking_start_time, results = processor.process_thinking_chunk(chunk, thinking_start_time)
for result in results:
yield result
provider.live += 1
except:
provider.live -= 1
raise
if sources is not None:
yield sources