Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
593b176
1
Parent(s):
bd34a5b
First commit
Browse files- .gitattributes +1 -0
- app.py +237 -0
- assets/overview.png +3 -0
- examples/0_pikachu.png +3 -0
- examples/1_jurassic.png +3 -0
- examples/2_falcon.png +3 -0
- requirements.txt +20 -0
- src/plot.py +57 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoModel
|
| 5 |
+
import os
|
| 6 |
+
import torchvision.transforms.functional as F
|
| 7 |
+
from src.plot import plot_qualitative
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
import base64
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
# --- Setup ---
|
| 14 |
+
os.environ["GRADIO_TEMP_DIR"] = "tmp"
|
| 15 |
+
os.makedirs(os.environ["GRADIO_TEMP_DIR"], exist_ok=True)
|
| 16 |
+
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
|
| 19 |
+
# --- Load Models ---
|
| 20 |
+
model_B = AutoModel.from_pretrained("lorebianchi98/Talk2DINO-ViTB", trust_remote_code=True).to(device).eval()
|
| 21 |
+
model_L = AutoModel.from_pretrained("lorebianchi98/Talk2DINO-ViTL", trust_remote_code=True).to(device).eval()
|
| 22 |
+
MODELS = {"ViT-B": model_B, "ViT-L": model_L}
|
| 23 |
+
|
| 24 |
+
# --- Example Setup ---
|
| 25 |
+
EXAMPLE_IMAGES_DIR = Path("examples").resolve()
|
| 26 |
+
example_images = sorted([str(p) for p in EXAMPLE_IMAGES_DIR.glob("*.png")])
|
| 27 |
+
|
| 28 |
+
DEFAULT_CLASSES = {
|
| 29 |
+
"0_pikachu.png": "pikachu,traffic_sign,forest,road,cap",
|
| 30 |
+
"1_jurassic.png": "dinosaur,smoke,vegetation,person",
|
| 31 |
+
"2_falcon.png": "millenium_falcon,space"
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
DEFAULT_BG_THRESH = 0.55
|
| 35 |
+
DEFAULT_BG_CLEAN = False
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# --- Inference Function ---
|
| 39 |
+
def talk2dino_infer(input_image, class_text, selected_model="ViT-B",
|
| 40 |
+
apply_pamr=True, with_background=False, bg_thresh=0.55, apply_bg_clean=False):
|
| 41 |
+
if input_image is None:
|
| 42 |
+
raise gr.Error("No image detected. Please select or upload an image first.")
|
| 43 |
+
|
| 44 |
+
model = MODELS[selected_model]
|
| 45 |
+
text = [t.strip() for t in class_text.replace("_", " ").split(",") if t.strip()]
|
| 46 |
+
if len(text) == 0:
|
| 47 |
+
raise gr.Error("Please provide at least one class name before generating segmentation.")
|
| 48 |
+
|
| 49 |
+
img = F.to_tensor(input_image).unsqueeze(0).float().to(device) * 255.0
|
| 50 |
+
|
| 51 |
+
# Generate color palette
|
| 52 |
+
palette = [
|
| 53 |
+
[255, 0, 0],
|
| 54 |
+
[255, 255, 0],
|
| 55 |
+
[0, 255, 0],
|
| 56 |
+
[0, 255, 255],
|
| 57 |
+
[0, 0, 255],
|
| 58 |
+
[128, 128, 128]
|
| 59 |
+
]
|
| 60 |
+
if len(text) > len(palette):
|
| 61 |
+
for _ in range(len(text) - len(palette)):
|
| 62 |
+
palette.append([np.random.randint(0, 255) for _ in range(3)])
|
| 63 |
+
|
| 64 |
+
if with_background:
|
| 65 |
+
palette.insert(0, [0, 0, 0])
|
| 66 |
+
model.with_bg_clean = apply_bg_clean
|
| 67 |
+
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
text_emb = model.build_dataset_class_tokens("sub_imagenet_template", text)
|
| 70 |
+
text_emb = model.build_text_embedding(text_emb)
|
| 71 |
+
mask, _ = model.generate_masks(img, img_metas=None, text_emb=text_emb,
|
| 72 |
+
classnames=text, apply_pamr=apply_pamr)
|
| 73 |
+
if with_background:
|
| 74 |
+
background = torch.ones_like(mask[:, :1]) * bg_thresh
|
| 75 |
+
mask = torch.cat([background, mask], dim=1)
|
| 76 |
+
mask = mask.argmax(dim=1)
|
| 77 |
+
|
| 78 |
+
if with_background:
|
| 79 |
+
text = ["background"] + text
|
| 80 |
+
|
| 81 |
+
img_out = plot_qualitative(
|
| 82 |
+
img.cpu()[0].permute(1, 2, 0).int().numpy(),
|
| 83 |
+
mask.cpu()[0].numpy(),
|
| 84 |
+
palette,
|
| 85 |
+
texts=text
|
| 86 |
+
)
|
| 87 |
+
return img_out
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# --- Gradio Interface ---
|
| 91 |
+
with gr.Blocks(title="Talk2DINO Demo") as demo:
|
| 92 |
+
|
| 93 |
+
# Overview Section
|
| 94 |
+
overview_img = Image.open("assets/overview.png").convert("RGB")
|
| 95 |
+
overview_img = overview_img.resize((int(overview_img.width * 0.7), int(overview_img.height * 0.7)))
|
| 96 |
+
buffered = BytesIO()
|
| 97 |
+
overview_img.save(buffered, format="PNG")
|
| 98 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 99 |
+
|
| 100 |
+
gr.Markdown(f"""
|
| 101 |
+
# 🦖 Talk2DINO Demo
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+

|
| 105 |
+
|
| 106 |
+
<div style="font-size: x-large; white-space: nowrap; display: flex; align-items: center; gap: 10px;">
|
| 107 |
+
<a href="https://lorebianchi98.github.io/Talk2DINO/" target="_blank">Project page</a>
|
| 108 |
+
<span>|</span>
|
| 109 |
+
<a href="http://arxiv.org/abs/2411.19331" target="_blank">
|
| 110 |
+
<img src="https://img.shields.io/badge/arXiv-2411.19331-b31b1b.svg" style="height:28px; vertical-align:middle;">
|
| 111 |
+
</a>
|
| 112 |
+
<span>|</span>
|
| 113 |
+
<a href="https://huggingface.co/papers/2411.19331" target="_blank">
|
| 114 |
+
<img src="https://img.shields.io/badge/HuggingFace-Paper-yellow.svg" style="height:28px; vertical-align:middle;">
|
| 115 |
+
</a>
|
| 116 |
+
</div>
|
| 117 |
+
|
| 118 |
+
---
|
| 119 |
+
|
| 120 |
+
This demo allows you to **perform open-vocabulary semantic segmentation** on images using Talk2DINO.
|
| 121 |
+
|
| 122 |
+
**How to use:**
|
| 123 |
+
1. Upload an image or select one from the example gallery.
|
| 124 |
+
2. Enter a comma-separated list of class names you want to segment (e.g., `pikachu, forest, road`).
|
| 125 |
+
3. Adjust optional parameters:
|
| 126 |
+
- **Model**: choose between ViT-B and ViT-L
|
| 127 |
+
- **Apply PAMR**: refine masks after initial prediction
|
| 128 |
+
- **Include Background**: visualize background areas
|
| 129 |
+
- **Background Threshold**: threshold for background intensity
|
| 130 |
+
- **Apply Background Cleaning**: remove background noise when enabled
|
| 131 |
+
4. Click **Generate Segmentation** to see the segmentation overlay.
|
| 132 |
+
""")
|
| 133 |
+
|
| 134 |
+
with gr.Row():
|
| 135 |
+
with gr.Column():
|
| 136 |
+
input_image = gr.Image(type="pil", label="Input Image", value=None)
|
| 137 |
+
if example_images:
|
| 138 |
+
example_gallery = gr.Gallery(
|
| 139 |
+
value=example_images,
|
| 140 |
+
label="Or select from example images",
|
| 141 |
+
show_label=True,
|
| 142 |
+
columns=3,
|
| 143 |
+
object_fit="contain",
|
| 144 |
+
height="auto"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
with gr.Column():
|
| 148 |
+
model_selector = gr.Dropdown(
|
| 149 |
+
label="Select Model",
|
| 150 |
+
choices=["ViT-B", "ViT-L"],
|
| 151 |
+
value="ViT-B"
|
| 152 |
+
)
|
| 153 |
+
class_text = gr.Textbox(
|
| 154 |
+
label="Comma-separated Classes",
|
| 155 |
+
value="",
|
| 156 |
+
placeholder="e.g. pikachu, road, tree"
|
| 157 |
+
)
|
| 158 |
+
apply_pamr = gr.Checkbox(label="Apply PAMR", value=True)
|
| 159 |
+
with_background = gr.Checkbox(label="Include Background", value=False)
|
| 160 |
+
bg_thresh = gr.Slider(
|
| 161 |
+
label="Background Threshold",
|
| 162 |
+
minimum=0.0,
|
| 163 |
+
maximum=1.0,
|
| 164 |
+
value=DEFAULT_BG_THRESH,
|
| 165 |
+
step=0.01,
|
| 166 |
+
interactive=False
|
| 167 |
+
)
|
| 168 |
+
apply_bg_clean = gr.Checkbox(
|
| 169 |
+
label="Apply Background Cleaning",
|
| 170 |
+
value=False,
|
| 171 |
+
interactive=False
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
generate_button = gr.Button("🚀 Generate Segmentation", interactive=False)
|
| 175 |
+
output_image = gr.Image(type="numpy", label="Segmentation Overlay")
|
| 176 |
+
|
| 177 |
+
# --- Background Option Toggle ---
|
| 178 |
+
def toggle_bg_options(with_bg):
|
| 179 |
+
if with_bg:
|
| 180 |
+
return gr.update(interactive=True, value=DEFAULT_BG_THRESH), gr.update(interactive=True, value=DEFAULT_BG_CLEAN)
|
| 181 |
+
else:
|
| 182 |
+
return gr.update(interactive=False, value=DEFAULT_BG_THRESH), gr.update(interactive=False, value=DEFAULT_BG_CLEAN)
|
| 183 |
+
|
| 184 |
+
with_background.change(
|
| 185 |
+
fn=toggle_bg_options,
|
| 186 |
+
inputs=[with_background],
|
| 187 |
+
outputs=[bg_thresh, apply_bg_clean]
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# --- Enable Button Only When Classes Exist ---
|
| 191 |
+
def enable_generate_button(text):
|
| 192 |
+
return gr.update(interactive=bool(text.strip()))
|
| 193 |
+
|
| 194 |
+
class_text.change(fn=enable_generate_button, inputs=[class_text], outputs=[generate_button])
|
| 195 |
+
|
| 196 |
+
# --- Example Image Loader ---
|
| 197 |
+
def load_example_image(evt: gr.SelectData):
|
| 198 |
+
selected = evt.value["image"]
|
| 199 |
+
if isinstance(selected, str):
|
| 200 |
+
img = Image.open(selected).convert("RGB")
|
| 201 |
+
filename = Path(selected).name
|
| 202 |
+
elif isinstance(selected, dict):
|
| 203 |
+
img = Image.open(selected["path"]).convert("RGB")
|
| 204 |
+
filename = Path(selected["path"]).name
|
| 205 |
+
else:
|
| 206 |
+
img = Image.fromarray(selected)
|
| 207 |
+
filename = None
|
| 208 |
+
class_val = DEFAULT_CLASSES.get(filename, "")
|
| 209 |
+
return img, class_val, gr.update(interactive=bool(class_val.strip()))
|
| 210 |
+
|
| 211 |
+
if example_images:
|
| 212 |
+
example_gallery.select(
|
| 213 |
+
fn=load_example_image,
|
| 214 |
+
inputs=[],
|
| 215 |
+
outputs=[input_image, class_text, generate_button]
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# --- User Upload Reset ---
|
| 219 |
+
def on_upload_image(img):
|
| 220 |
+
if img is None:
|
| 221 |
+
return None, "", gr.update(interactive=False)
|
| 222 |
+
return img, "", gr.update(interactive=False)
|
| 223 |
+
|
| 224 |
+
input_image.upload(
|
| 225 |
+
fn=on_upload_image,
|
| 226 |
+
inputs=[input_image],
|
| 227 |
+
outputs=[input_image, class_text, generate_button]
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# --- Generate Segmentation ---
|
| 231 |
+
generate_button.click(
|
| 232 |
+
talk2dino_infer,
|
| 233 |
+
inputs=[input_image, class_text, model_selector, apply_pamr, with_background, bg_thresh, apply_bg_clean],
|
| 234 |
+
outputs=output_image
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
demo.launch(server_port=7870, share=False)
|
assets/overview.png
ADDED
|
Git LFS Details
|
examples/0_pikachu.png
ADDED
|
Git LFS Details
|
examples/1_jurassic.png
ADDED
|
Git LFS Details
|
examples/2_falcon.png
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/openai/CLIP.git
|
| 2 |
+
matplotlib
|
| 3 |
+
opencv-python
|
| 4 |
+
pyyaml
|
| 5 |
+
requests
|
| 6 |
+
scikit-image
|
| 7 |
+
tqdm
|
| 8 |
+
omegaconf
|
| 9 |
+
einops
|
| 10 |
+
timm
|
| 11 |
+
transformers
|
| 12 |
+
webdataset
|
| 13 |
+
numpy==1.24.1
|
| 14 |
+
jaxtyping
|
| 15 |
+
rich
|
| 16 |
+
scikit-learn
|
| 17 |
+
safetensors==0.4.3
|
| 18 |
+
gradio
|
| 19 |
+
torch
|
| 20 |
+
torchvision
|
src/plot.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from matplotlib import pyplot as plt
|
| 3 |
+
from matplotlib.patches import Rectangle
|
| 4 |
+
|
| 5 |
+
def plot_qualitative(image, sim, palette, texts, alpha=0.6, legend_height=0.1):
|
| 6 |
+
"""
|
| 7 |
+
image: HxWx3 uint8 image
|
| 8 |
+
sim: HxW segmentation mask with integer class IDs
|
| 9 |
+
palette: list of [R,G,B] colors
|
| 10 |
+
texts: list of class names corresponding to IDs
|
| 11 |
+
alpha: transparency for overlay
|
| 12 |
+
legend_height: fraction of figure height reserved for legend
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
qualitative_plot = np.zeros((sim.shape[0], sim.shape[1], 3), dtype=np.uint8)
|
| 16 |
+
for j in np.unique(sim):
|
| 17 |
+
qualitative_plot[sim == j] = np.array(palette[j])
|
| 18 |
+
|
| 19 |
+
# Normalize images for alpha blending
|
| 20 |
+
img_float = image.astype(np.float32) / 255.0
|
| 21 |
+
overlay_float = qualitative_plot.astype(np.float32) / 255.0
|
| 22 |
+
|
| 23 |
+
# Figure with space for legend
|
| 24 |
+
fig_height = img_float.shape[0] / 100
|
| 25 |
+
fig_width = img_float.shape[1] / 100
|
| 26 |
+
fig = plt.figure(figsize=(fig_width, fig_height + legend_height * fig_height), dpi=100)
|
| 27 |
+
|
| 28 |
+
# Main image axis
|
| 29 |
+
ax_img = fig.add_axes([0, legend_height, 1, 1 - legend_height])
|
| 30 |
+
ax_img.imshow(img_float)
|
| 31 |
+
ax_img.imshow(overlay_float, alpha=alpha)
|
| 32 |
+
ax_img.axis("off")
|
| 33 |
+
|
| 34 |
+
# Legend axis
|
| 35 |
+
ax_legend = fig.add_axes([0, 0, 1, legend_height])
|
| 36 |
+
ax_legend.axis("off")
|
| 37 |
+
|
| 38 |
+
# Draw legend rectangles
|
| 39 |
+
unique_classes = np.unique(sim)
|
| 40 |
+
num_classes = len(unique_classes)
|
| 41 |
+
for idx, cls in enumerate(unique_classes):
|
| 42 |
+
color = np.array(palette[cls]) / 255.0
|
| 43 |
+
# Rectangle: (x, y), width, height
|
| 44 |
+
rect_width = 1 / num_classes * 0.8
|
| 45 |
+
rect = Rectangle((idx / num_classes, 0.1), rect_width, 0.6, facecolor=color)
|
| 46 |
+
ax_legend.add_patch(rect)
|
| 47 |
+
# Add text label centered on rectangle
|
| 48 |
+
ax_legend.text(idx / num_classes + rect_width / 2, 0.8, texts[cls],
|
| 49 |
+
ha='center', va='bottom', fontsize=10)
|
| 50 |
+
|
| 51 |
+
# Extract as NumPy array
|
| 52 |
+
fig.canvas.draw()
|
| 53 |
+
buf = np.asarray(fig.canvas.renderer.buffer_rgba())
|
| 54 |
+
img_array = (buf[:, :, :3]).copy() # drop alpha
|
| 55 |
+
|
| 56 |
+
plt.close(fig)
|
| 57 |
+
return img_array
|