File size: 10,042 Bytes
d48b60d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7aaf42
d48b60d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# app_ijepa.py
# Gradio UI for interactive I-JEPA patch cosine similarity
# Fixed for modern Gradio .select API (evt passed as first arg)

import io, math, urllib.request
from functools import lru_cache
from typing import Optional

import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torch
from torchvision import transforms
from transformers import AutoModel
from matplotlib import colormaps as cm

# ---------------- Models ----------------
IJ_EPA_MODEL_IDS = [
    "facebook/ijepa_vith14_1k",
    "facebook/ijepa_vith16_1k",
    "facebook/ijepa_vitg16_22k",
]

SHORT_NAMES = {
    "facebook/ijepa_vith14_1k": "vith14_1k",
    "facebook/ijepa_vith16_1k": "vith16_1k",
    "facebook/ijepa_vitg16_22k": "vitg16_22k",
}
REVERSE_MAP = {v: k for k, v in SHORT_NAMES.items()}

DEFAULT_MODEL = "vith14_1k"
DEFAULT_URL = "http://images.cocodataset.org/val2017/000000039769.jpg"
DEFAULT_OVERLAY_ALPHA = 0.55
DEFAULT_SHOW_GRID = True

IJ_EPA_MEAN = [0.5, 0.5, 0.5]
IJ_EPA_STD  = [0.5, 0.5, 0.5]

# ---------------- Utilities ----------------
def load_image_from_any(src: Optional[Image.Image], url: Optional[str]) -> Optional[Image.Image]:
    if url and str(url).lower().startswith(("http://", "https://")):
        with urllib.request.urlopen(url) as resp:
            data = resp.read()
        return Image.open(io.BytesIO(data)).convert("RGB")
    if isinstance(src, Image.Image):
        return src.convert("RGB")
    return None

def pad_to_multiple(pil_img: Image.Image, multiple: int = 16):
    W, H = pil_img.size
    H_pad = int(math.ceil(H / multiple) * multiple)
    W_pad = int(math.ceil(W / multiple) * multiple)
    if (H_pad, W_pad) == (H, W):
        return pil_img
    canvas = Image.new("RGB", (W_pad, H_pad), (0,0,0))
    canvas.paste(pil_img, (0,0))
    return canvas

def preprocess_no_resize(pil_img: Image.Image, multiple: int = 16):
    img_padded = pad_to_multiple(pil_img, multiple=multiple)
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=IJ_EPA_MEAN, std=IJ_EPA_STD),
    ])
    pixel_tensor = transform(img_padded).unsqueeze(0)
    disp_np = np.array(img_padded, dtype=np.uint8)
    return {"pixel_values": pixel_tensor}, disp_np

def upsample_nearest(arr: np.ndarray, H: int, W: int, ps: int):
    if arr.ndim == 2:
        return arr.repeat(ps, 0).repeat(ps, 1)
    elif arr.ndim == 3:
        return arr.repeat(ps, 0).repeat(ps, 1).reshape(H, W, -1)
    raise ValueError

def blend_overlay(base_uint8, overlay_rgb_float, alpha: float):
    base = base_uint8.astype(np.float32)
    over = (overlay_rgb_float * 255.0).astype(np.float32)
    out = (1.0 - alpha) * base + alpha * over
    return np.clip(out, 0, 255).astype(np.uint8)

def draw_grid(img: Image.Image, rows: int, cols: int, ps: int):
    d = ImageDraw.Draw(img)
    for r in range(1, rows):
        d.line([(0, r*ps), (img.width, r*ps)], fill=(255,255,255), width=1)
    for c in range(1, cols):
        d.line([(c*ps, 0), (c*ps, img.height)], fill=(255,255,255), width=1)

def rc_to_idx(r: int, c: int, cols: int): return r * cols + c
def idx_to_rc(i: int, cols: int): return divmod(i, cols)

# ---------------- Model cache ----------------
@lru_cache(maxsize=3)
def load_model_cached(full_model_id: str, device_str: str):
    model = AutoModel.from_pretrained(full_model_id, attn_implementation="sdpa").to(device_str)
    model.eval()
    return model

def infer_patch_size(model, default: int = 16) -> int:
    if hasattr(model, "config") and hasattr(model.config, "patch_size"):
        ps = model.config.patch_size
        return int(ps[0]) if isinstance(ps, (tuple, list)) else int(ps)
    if hasattr(model, "patch_size"):
        ps = model.patch_size
        return int(ps[0]) if isinstance(ps, (tuple, list)) else int(ps)
    return default

# ---------------- State ----------------
class PatchImageState:
    def __init__(self, pil_img, model, device_str, ps):
        self.ps = ps
        inputs, disp_np = preprocess_no_resize(pil_img, multiple=ps)
        self.disp = disp_np
        pv = inputs["pixel_values"].to(device_str)
        _, _, H, W = pv.shape
        self.H, self.W = H, W
        self.rows, self.cols = H // ps, W // ps
        with torch.no_grad():
            out = model(pixel_values=pv, interpolate_pos_encoding=True)
            hs = out.last_hidden_state.squeeze(0).cpu().numpy()
        T, D = hs.shape
        n_patches = self.rows * self.cols
        n_special = T - n_patches
        self.X = hs[n_special:, :].reshape(-1, D)
        self.Xn = self.X / (np.linalg.norm(self.X, axis=1, keepdims=True) + 1e-8)

# ---------------- Compute & render ----------------
def render_with_cosmap(st, cos_map, overlay_alpha, show_grid_flag, select_idx=None, best_idx=None):
    H, W, ps = st.H, st.W, st.ps
    rows, cols = st.rows, st.cols
    if cos_map is None:
        disp = np.full((rows, cols), 0.5, dtype=np.float32)
    else:
        disp = (cos_map - cos_map.min()) / (cos_map.ptp() + 1e-8)
    cmap = cm.get_cmap("magma")
    rgb = cmap(disp)[..., :3]
    if select_idx is not None:
        r, c = idx_to_rc(select_idx, cols)
        rgb[r, c, :] = np.array([1.0, 0.0, 0.0])
    over_rgb_up = upsample_nearest(rgb, H, W, ps)
    blended = blend_overlay(st.disp, over_rgb_up, float(overlay_alpha))
    pil = Image.fromarray(blended)
    if show_grid_flag: draw_grid(pil, rows, cols, ps)
    return pil

def compute_self_and_cross(src, tgt, q_idx):
    qn = src.Xn[q_idx]
    cos_self = src.Xn @ qn
    cos_map_self = cos_self.reshape(src.rows, src.cols)
    cos_map_cross, best_idx = None, None
    if tgt:
        cos_cross = tgt.Xn @ qn
        cos_map_cross = cos_cross.reshape(tgt.rows, tgt.cols)
        best_idx = int(np.argmax(cos_cross))
    return cos_map_self, cos_map_cross, best_idx

# ---------------- Gradio bindings ----------------
def resolve_full_model_id(short_name): return REVERSE_MAP.get(short_name)

def init_states(left_img_in, left_url, right_img_in, right_url, short_model, show_grid_flag, overlay_alpha):
    left_img  = load_image_from_any(left_img_in, left_url)
    right_img = load_image_from_any(right_img_in, right_url)
    if left_img is None and right_img is None:
        left_img = load_image_from_any(None, DEFAULT_URL)
    full_model_id = resolve_full_model_id(short_model)
    device_str = "cuda" if torch.cuda.is_available() else "cpu"
    model = load_model_cached(full_model_id, device_str)
    ps = infer_patch_size(model, 16)
    left_state  = PatchImageState(left_img, model, device_str, ps) if left_img else None
    right_state = PatchImageState(right_img, model, device_str, ps) if right_img else None
    active_side = 0 if left_state else 1
    status = f"✔ Loaded {full_model_id} | ps={ps}"
    return None, None, left_state, right_state, active_side, ps, status

def click_on(evt: gr.SelectData, which_side, left_state, right_state, active_side, ps, overlay_alpha, show_grid_flag):
    x, y = evt.index
    if which_side == "left" and left_state:
        r, c = int(y // ps), int(x // ps)
        q_idx = rc_to_idx(r, c, left_state.cols)
        cos_self, cos_cross, best_idx = compute_self_and_cross(left_state, right_state, q_idx)
        out_left = render_with_cosmap(left_state, cos_self, overlay_alpha, show_grid_flag, q_idx)
        out_right = render_with_cosmap(right_state, cos_cross, overlay_alpha, show_grid_flag, best_idx) if right_state else None
        return out_left, out_right
    if which_side == "right" and right_state:
        r, c = int(y // ps), int(x // ps)
        q_idx = rc_to_idx(r, c, right_state.cols)
        cos_self, cos_cross, best_idx = compute_self_and_cross(right_state, left_state, q_idx)
        out_right = render_with_cosmap(right_state, cos_self, overlay_alpha, show_grid_flag, q_idx)
        out_left  = render_with_cosmap(left_state, cos_cross, overlay_alpha, show_grid_flag, best_idx) if left_state else None
        return out_left, out_right
    return None, None

# ---------------- UI ----------------
with gr.Blocks() as demo:
    gr.Markdown("## I-JEPA Interactive Patch Cosine Similarity")
    with gr.Row():
        with gr.Column(scale=1):
            model_dd = gr.Dropdown(choices=list(REVERSE_MAP.keys()), value=DEFAULT_MODEL, label="Model")
            show_grid = gr.Checkbox(value=DEFAULT_SHOW_GRID, label="Show grid")
            alpha = gr.Slider(0.0, 1.0, value=DEFAULT_OVERLAY_ALPHA, step=0.01, label="Overlay alpha")
        status = gr.Markdown("")
    with gr.Row():
        with gr.Column():
            left_url   = gr.Textbox(label="Left image URL", value=DEFAULT_URL)
            left_img   = gr.Image(type="pil", label="or upload (left)")
            left_view  = gr.Image(type="pil", label="Left view")
        with gr.Column():
            right_url  = gr.Textbox(label="Right image URL (optional)")
            right_img  = gr.Image(type="pil", label="or upload (right)")
            right_view = gr.Image(type="pil", label="Right view")

    left_state  = gr.State()
    right_state = gr.State()
    active_side = gr.State(0)
    ps_st       = gr.State(16)

    btn = gr.Button("Load / Refresh")
    btn.click(
        fn=init_states,
        inputs=[left_img, left_url, right_img, right_url, model_dd, show_grid, alpha],
        outputs=[left_view, right_view, left_state, right_state, active_side, ps_st, status],
    )

    def handle_left(evt: gr.SelectData, ls, rs, as_, ps, a, sg):
        return click_on(evt, "left", ls, rs, as_, ps, a, sg)

    def handle_right(evt: gr.SelectData, ls, rs, as_, ps, a, sg):
        return click_on(evt, "right", ls, rs, as_, ps, a, sg)

    left_view.select(
        fn=handle_left,
        inputs=[left_state, right_state, active_side, ps_st, alpha, show_grid],
        outputs=[left_view, right_view],
    )
    right_view.select(
        fn=handle_right,
        inputs=[left_state, right_state, active_side, ps_st, alpha, show_grid],
        outputs=[left_view, right_view],
    )

demo.queue().launch(ssr_mode=False, server_name="0.0.0.0", server_port=7860)